

Foundations of Artificial Intelligence

39. Automated Planning: Landmark Heuristics

Malte Helmert

University of Basel

May 8, 2019

Automated Planning: Overview

Chapter overview: automated planning

- 33. Introduction
- 34. Planning Formalisms
- 35.–36. Planning Heuristics: Delete Relaxation
- 37 Planning Heuristics: Abstraction
- 38.–39. Planning Heuristics: Landmarks
 - 38. Landmarks
 - 39. Landmark Heuristics

Formalism and Example

- As in the previous chapter, we consider delete-free planning tasks in normal form.
- We continue with the example from the previous chapter:

Example

actions:

- $a_1 = i \xrightarrow{3} x, y$
- $a_2 = i \xrightarrow{4} x, z$
- $a_3 = i \xrightarrow{5} y, z$
- $a_4 = x, y, z \xrightarrow{0} g$

landmark examples:

- $A = \{a_4\}$ (cost = 0)
- $B = \{a_1, a_2\}$ (cost = 3)
- $C = \{a_1, a_3\}$ (cost = 3)
- $D = \{a_2, a_3\}$ (cost = 4)

Finding Landmarks

Justification Graphs

Definition (precondition choice function)

A **precondition choice function (pcf)** $P : A \rightarrow V$ maps every action to one of its preconditions.

Definition (justification graph)

The **justification graph** for pcf P is a directed graph with annotated edges.

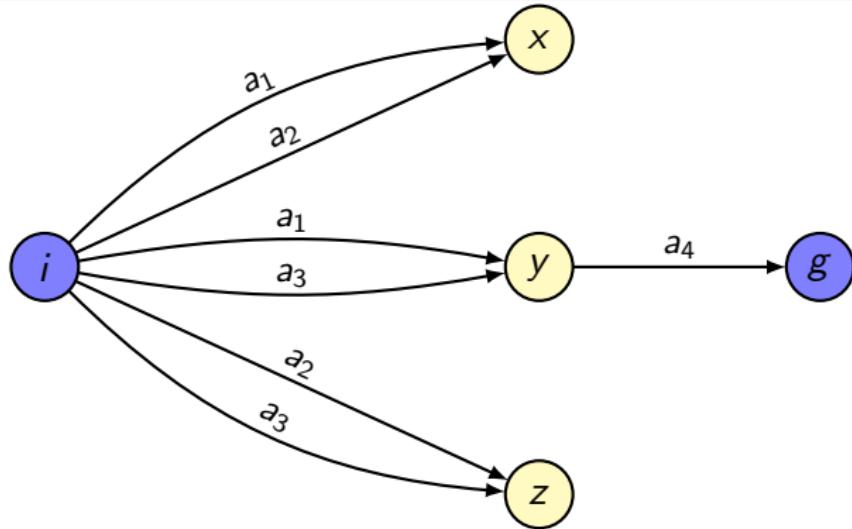
- **vertices:** the variables V
- **edges:** $P(a) \xrightarrow{a} e$ for every action a , every effect $e \in add(a)$

Example: Justification Graph

Example

pcf P : $P(a_1) = P(a_2) = P(a_3) = i, P(a_4) = y$

$a_1 = i \xrightarrow{3} x, y$
 $a_2 = i \xrightarrow{4} x, z$
 $a_3 = i \xrightarrow{5} y, z$
 $a_4 = x, y, z \xrightarrow{0} g$



Cuts

Definition (cut)

A **cut** in a justification graph is a subset C of its edges such that all paths from i to g contain an edge in C .

Cuts

Definition (cut)

A **cut** in a justification graph is a subset C of its edges such that all paths from i to g contain an edge in C .

Proposition (cuts are landmarks)

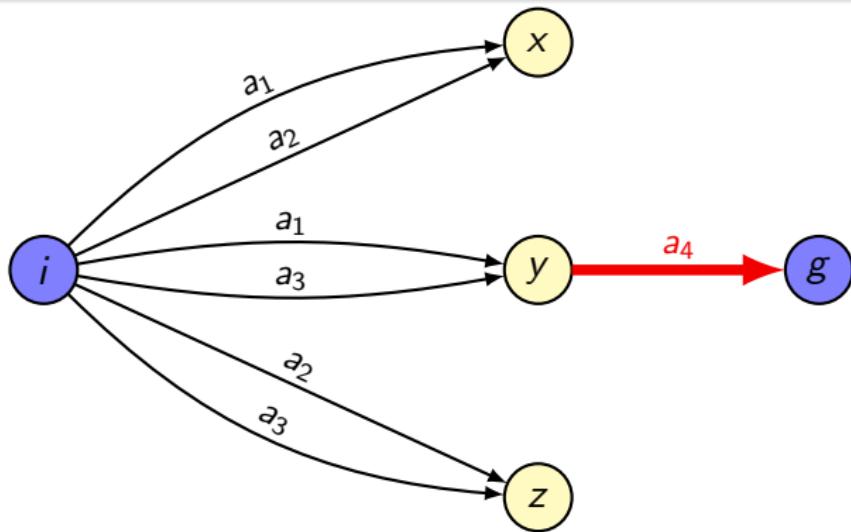
*Let C be a cut in a justification graph for an arbitrary pcf.
Then the edge annotations for C form a landmark.*

Example: Cuts in Justification Graphs

Example

landmark $A = \{a_4\}$ (cost = 0)

$$\begin{aligned}a_1 &= i \xrightarrow{3} x, y \\a_2 &= i \xrightarrow{4} x, z \\a_3 &= i \xrightarrow{5} y, z \\a_4 &= x, y, z \xrightarrow{0} g\end{aligned}$$

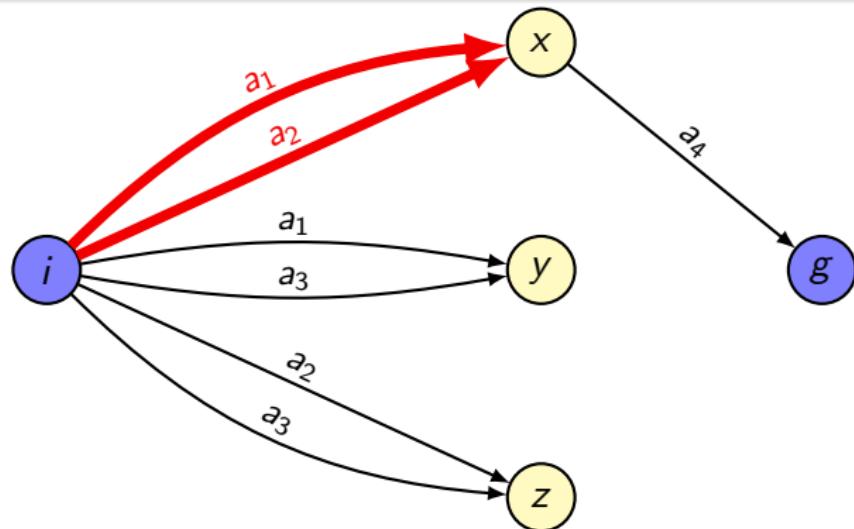


Example: Cuts in Justification Graphs

Example

landmark $B = \{a_1, a_2\}$ (cost = 3)

$$\begin{aligned}a_1 &= i \xrightarrow{3} x, y \\a_2 &= i \xrightarrow{4} x, z \\a_3 &= i \xrightarrow{5} y, z \\a_4 &= x, y, z \xrightarrow{0} g\end{aligned}$$

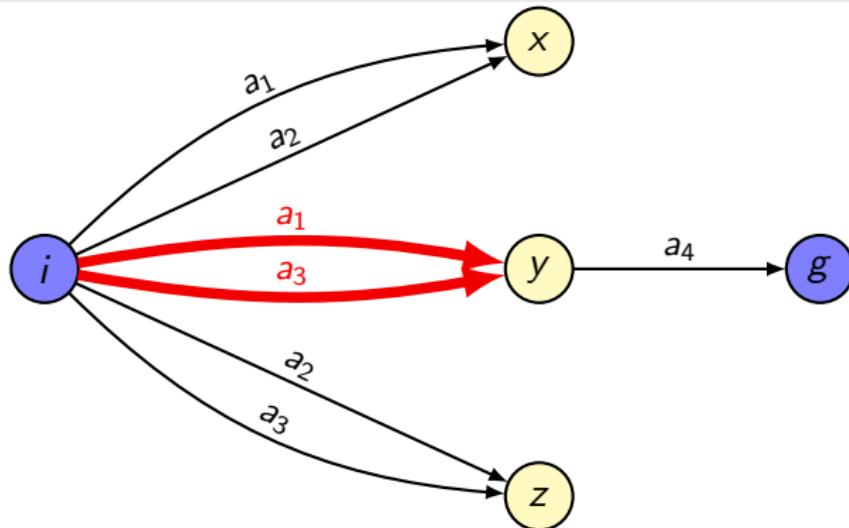


Example: Cuts in Justification Graphs

Example

landmark $C = \{a_1, a_3\}$ (cost = 3)

$$\begin{aligned}a_1 &= i \xrightarrow{3} x, y \\a_2 &= i \xrightarrow{4} x, z \\a_3 &= i \xrightarrow{5} y, z \\a_4 &= x, y, z \xrightarrow{0} g\end{aligned}$$

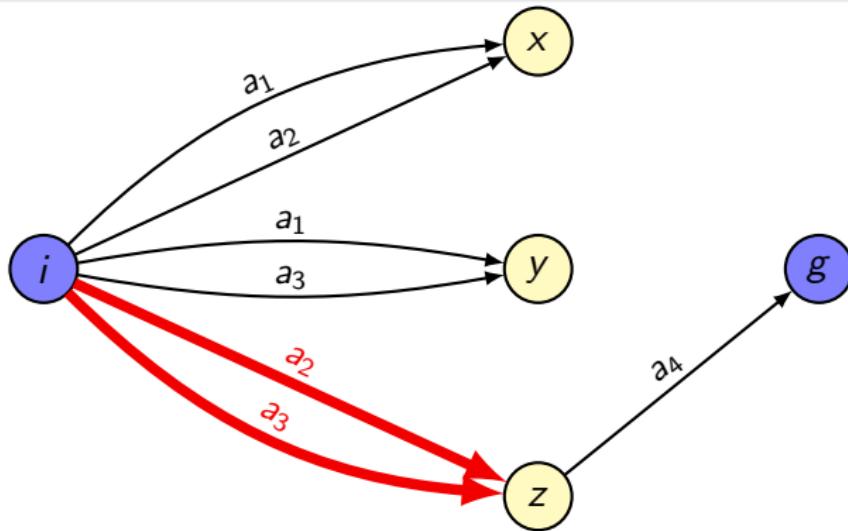


Example: Cuts in Justification Graphs

Example

landmark $D = \{a_2, a_3\}$ (cost = 4)

$$\begin{aligned}a_1 &= i \xrightarrow{3} x, y \\a_2 &= i \xrightarrow{4} x, z \\a_3 &= i \xrightarrow{5} y, z \\a_4 &= x, y, z \xrightarrow{0} g\end{aligned}$$



Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all “cut landmarks” of a given planning task.
Then $h^{\text{MHS}}(I) = h^+(I)$ for \mathcal{L} .

↔ hitting set heuristic for \mathcal{L} is perfect.

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all “cut landmarks” of a given planning task.
Then $h^{\text{MHS}}(I) = h^+(I)$ for \mathcal{L} .

↔ hitting set heuristic for \mathcal{L} is perfect.

proof idea:

- Show 1:1 correspondence of hitting sets H for \mathcal{L} and plans, i.e., each hitting set for \mathcal{L} corresponds to a plan, and vice versa.

The LM-Cut Heuristic

LM-Cut Heuristic: Motivation

- In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- The **LM-cut heuristic** is a method that chooses pcfs and computes cuts in a **goal-oriented** way.
- A cost partitioning is computed as a side effect and is usually not optimal.
- However, the cost partitioning can be computed efficiently and is optimal for planning tasks with uniform costs (i.e., $cost(a) = 1$ for all actions).

~~ currently one of the best admissible planning heuristics

The LM-Cut Heuristic

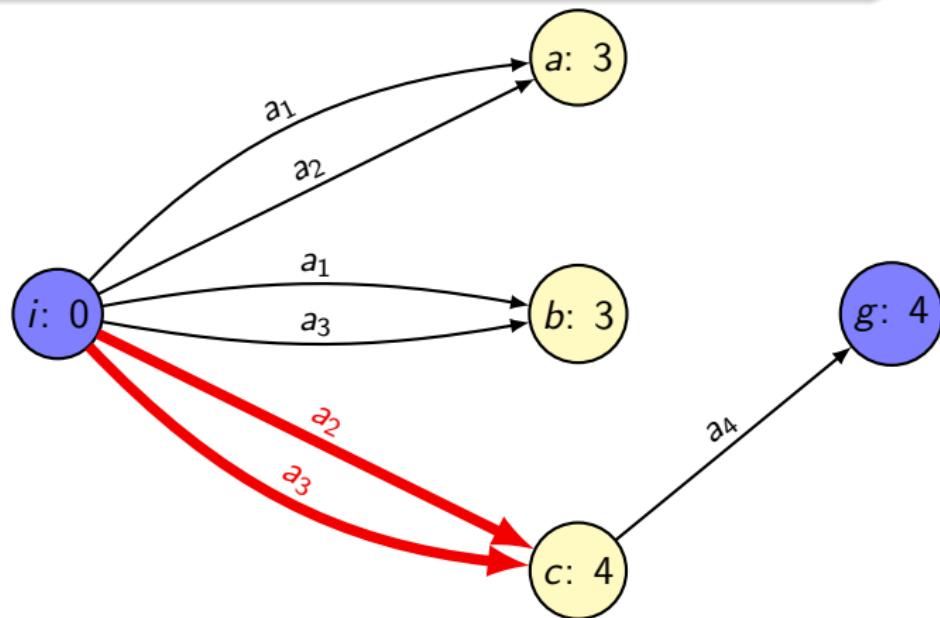
$h^{\text{LM-cut}}$: Helmert & Domshlak (2009)

Initialize $h^{\text{LM-cut}}(I) := 0$. Then iterate:

- ① Compute h^{\max} values of the variables.
Stop if $h^{\max}(g) = 0$.
- ② Let P be a pcf that chooses preconditions with maximal h^{\max} value. (Requires a tie-breaking policy.)
- ③ Compute the justification graph for P .
- ④ Compute a cut which guarantees $\text{cost}(L) > 0$ for the corresponding landmark L .
(We omit the details of how this is done.)
- ⑤ Increase $h^{\text{LM-cut}}(I)$ by $\text{cost}(L)$.
- ⑥ Decrease $\text{cost}(a)$ by $\text{cost}(L)$ for all $a \in L$.

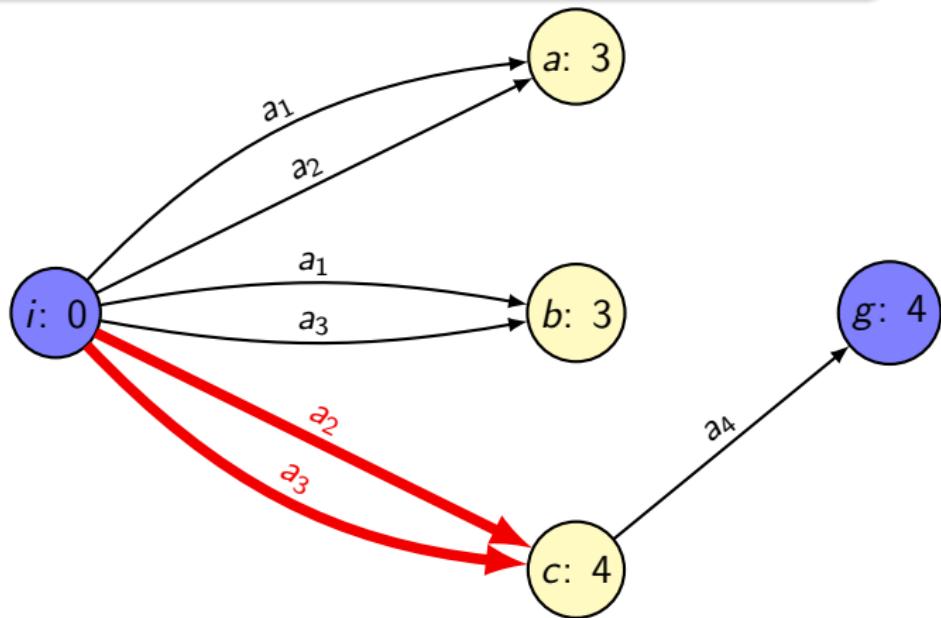
Example: Computation of LM-Cut

Example

round 1: $P(a_4) = c \rightsquigarrow L = \{a_2, a_3\}$ [4]
$$\begin{aligned}a_1 &= i \xrightarrow{3} a, b \\a_2 &= i \xrightarrow{4} a, c \\a_3 &= i \xrightarrow{5} b, c \\a_4 &= a, b, c \xrightarrow{0} g\end{aligned}$$


Example: Computation of LM-Cut

Example

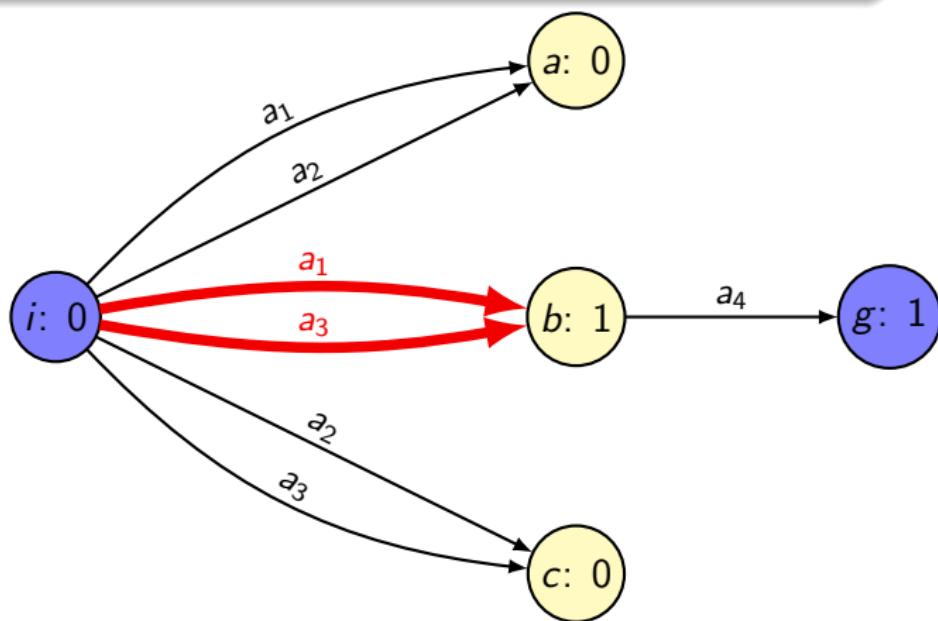
round 1: $P(a_4) = c \rightsquigarrow L = \{a_2, a_3\} [4] \rightsquigarrow h^{\text{LM-cut}}(I) := 4$
$$\begin{aligned} a_1 &= i \xrightarrow{3} a, b \\ a_2 &= i \xrightarrow{0} a, c \\ a_3 &= i \xrightarrow{1} b, c \\ a_4 &= a, b, c \xrightarrow{0} g \end{aligned}$$


Example: Computation of LM-Cut

Example

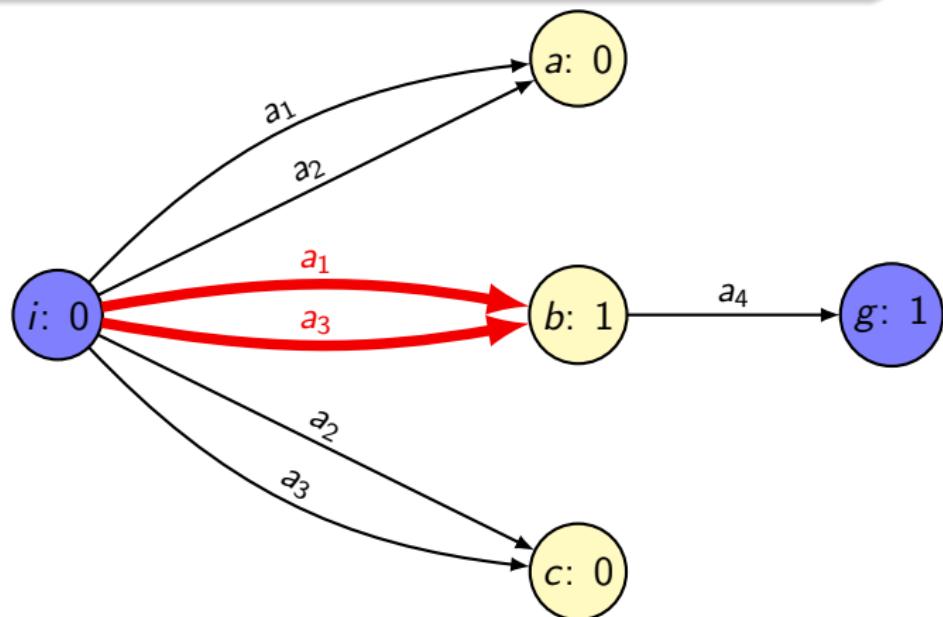
round 2: $P(a_4) = b \rightsquigarrow L = \{a_1, a_3\}$ [1]

$$\begin{aligned}a_1 &= i \xrightarrow{3} a, b \\a_2 &= i \xrightarrow{0} a, c \\a_3 &= i \xrightarrow{1} b, c \\a_4 &= a, b, c \xrightarrow{0} g\end{aligned}$$



Example: Computation of LM-Cut

Example

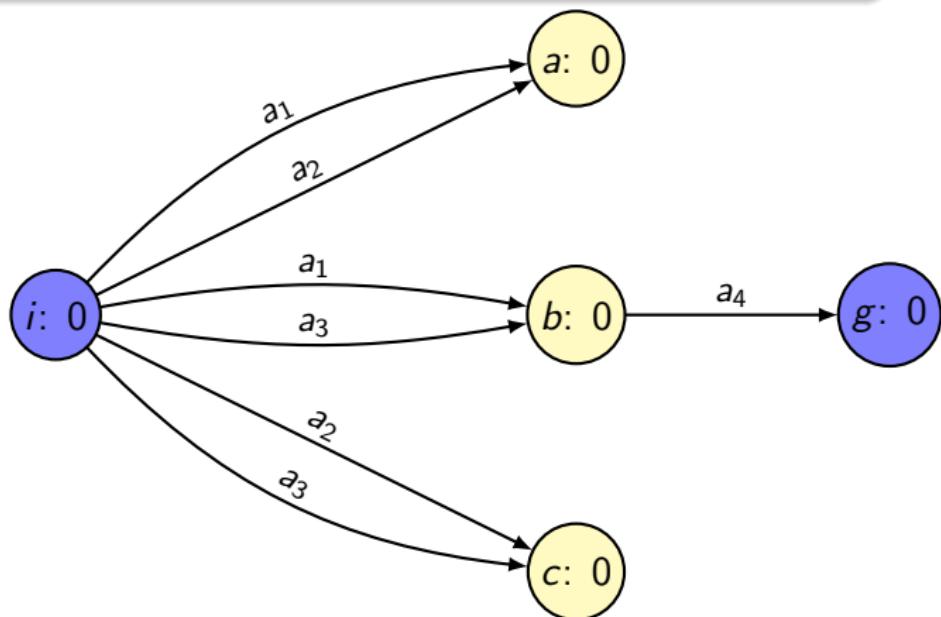
round 2: $P(a_4) = b \rightsquigarrow L = \{a_1, a_3\} [1] \rightsquigarrow h^{\text{LM-cut}}(I) := 4 + 1 = 5$
$$\begin{aligned}a_1 &= i \xrightarrow{2} a, b \\a_2 &= i \xrightarrow{0} a, c \\a_3 &= i \xrightarrow{0} b, c \\a_4 &= a, b, c \xrightarrow{0} g\end{aligned}$$


Example: Computation of LM-Cut

Example

round 3: $h^{\max}(g) = 0 \rightsquigarrow \text{done!} \rightsquigarrow h^{\text{LM-cut}}(I) = 5$

$$\begin{aligned}a_1 &= i \xrightarrow{2} a, b \\a_2 &= i \xrightarrow{0} a, c \\a_3 &= i \xrightarrow{0} b, c \\a_4 &= a, b, c \xrightarrow{0} g\end{aligned}$$



Summary

Summary

- Cuts in justification graphs are a general method to find landmarks.
- Hitting sets over all cut landmarks yield a perfect heuristic for delete-free planning tasks.
- The LM-cut heuristic is an admissible heuristic based on these ideas.