
Foundations of Artificial Intelligence
37. Automated Planning: Abstraction

Malte Helmert

University of Basel

May 6, 2019

SAS+ Abstractions Pattern Databases Summary

Automated Planning: Overview

Chapter overview: automated planning

33. Introduction

34. Planning Formalisms

35.–36. Planning Heuristics: Delete Relaxation

37. Planning Heuristics: Abstraction

38.–39. Planning Heuristics: Landmarks

SAS+ Abstractions Pattern Databases Summary

Planning Heuristics

We consider three basic ideas for general heuristics:

Delete Relaxation

Abstraction this chapter

Landmarks

Abstraction: Idea

Estimate solution costs by considering a smaller planning task.

SAS+ Abstractions Pattern Databases Summary

Planning Heuristics

We consider three basic ideas for general heuristics:

Delete Relaxation

Abstraction this chapter

Landmarks

Abstraction: Idea

Estimate solution costs by considering a smaller planning task.

SAS+ Abstractions Pattern Databases Summary

SAS+

SAS+ Abstractions Pattern Databases Summary

SAS+ Encoding

in this and the next chapter: SAS+ encoding
instead of STRIPS (see Chapter 34)

difference: state variables v not binary,
but with finite domain dom(v)

accordingly, preconditions, effects, goals
specified as partial assignments

everything else equal to STRIPS

(In practice, planning systems convert automatically
between STRIPS and SAS+.)

SAS+ Abstractions Pattern Databases Summary

SAS+ Planning Task

Definition (SAS+ planning task)

A SAS+ planning task is a 5-tuple Π = 〈V , dom, I ,G ,A〉
with the following components:

V : finite set of state variables

dom: domain; dom(v) finite and non-empty for all v ∈ V

states: total assignments for V according to dom

I : the initial state (state = total assignment)

G : goals (partial assignment)

A: finite set of actions a with

pre(a): its preconditions (partial assignment)
eff(a): its effects (partial assignment)
cost(a) ∈ N0: its cost

German: SAS+-Planungsaufgabe

SAS+ Abstractions Pattern Databases Summary

State Space of SAS+ Planning Task

Definition (state space induced by SAS+ planning task)

Let Π = 〈V , dom, I ,G ,A〉 be a SAS+ planning task.
Then Π induces the state space S(Π) = 〈S ,A, cost,T , s0,S?〉:

set of states: total assignments of V according to dom

actions: actions A defined as in Π

action costs: cost as defined in Π

transitions: s
a−→ s ′ for states s, s ′ and action a iff

pre(a) complies with s (precondition satisfied)
s ′ complies with eff(a) for all variables mentioned in eff;
complies with s for all other variables (effects are applied)

initial state: s0 = I

goal states: s ∈ S? for state s iff G complies with s

German: durch SAS+-Planungsaufgabe induzierter Zustandsraum

SAS+ Abstractions Pattern Databases Summary

Example: Logistics Task with One Package, Two Trucks

Example (one package, two trucks)

Consider the SAS+ planning task 〈V , dom, I ,G ,A〉 with:

V = {p, tA, tB}
dom(p) = {L,R,A,B} and dom(tA) = dom(tB) = {L,R}
I = {p 7→ L, tA 7→ R, tB 7→ R} and G = {p 7→ R}
A = {pickupi ,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {dropi ,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {movei ,j ,j ′ | i ∈ {A,B}, j , j ′ ∈ {L,R}, j 6= j ′} with:

pickupi,j has preconditions {ti 7→ j , p 7→ j}, effects {p 7→ i}
dropi,j has preconditions {ti 7→ j , p 7→ i}, effects {p 7→ j}
movei,j,j′ has preconditions {ti 7→ j}, effects {ti 7→ j ′}
All actions have cost 1.

pickup corresponds to load, and drop to unload from Chapter 35
(renamed to avoid confusion in the following abbreviations)

SAS+ Abstractions Pattern Databases Summary

State Space for Example Task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

state {p 7→ i , tA 7→ j , tB 7→ k} denoted as ijk

annotations of edges not shown for simplicity

for example, edge from LLL to ALL has annotation pickupA,L

SAS+ Abstractions Pattern Databases Summary

Abstractions

SAS+ Abstractions Pattern Databases Summary

State Space Abstraction

State space abstractions drop distinctions between certain states,
but preserve the state space behavior as well as possible.

An abstraction of a state space S is defined by
an abstraction function α that determines which states
can be distinguished in the abstraction.

Based on S and α, we compute the abstract state space Sα
which is “similar” to S but smaller.

German: Abstraktionsfunktion, abstrakter Zustandsraum

Abstraction Heuristic

Use abstract solution costs (solution costs in Sα)
as heuristic values for concrete solution costs (solution costs in S).
 abstraction heuristic hα

German: abstrakte/konkrete Zielabstände, Abstraktionsheuristik

SAS+ Abstractions Pattern Databases Summary

Induced Abstraction

Definition (induced abstraction)

Let S = 〈S ,A, cost,T , s0, S?〉 be a state space,
and let α : S → S ′ be a surjective function.

The abstraction of S induced by α, denoted as Sα,
is the state space Sα = 〈S ′,A, cost,T ′, s ′0,S

′
?〉 with:

T ′ = {〈α(s), a, α(t)〉 | 〈s, a, t〉 ∈ T}
s ′0 = α(s0)

S ′
? = {α(s) | s ∈ S?}

German: induzierte Abstraktion

SAS+ Abstractions Pattern Databases Summary

Abstraction: Example

concrete state space

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

SAS+ Abstractions Pattern Databases Summary

Abstraction: Example

(an) abstract state space

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

remark: Most edges correspond to several (parallel) transitions
with different annotations.

SAS+ Abstractions Pattern Databases Summary

Abstraction Heuristic: Example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

BLRBRL

ALL ARR

BLL BRR

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hα({p 7→ L, tA 7→ R, tB 7→ R}) = 3

SAS+ Abstractions Pattern Databases Summary

Abstraction Heuristics: Discussion

Every abstraction heuristic is admissible and consistent.
(proof idea?)

The choice of the abstraction function α is very important.

Every α yields an admissible and consistent heuristic.
But most α lead to poor heuristics.

An effective α must yield an informative heuristic . . .

. . . as well as being efficiently computable.

How to find a suitable α?

SAS+ Abstractions Pattern Databases Summary

Usually a Bad Idea: Single-State Abstraction

LRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLLLRR

LLR

LLL

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

one state abstraction: α(s) := const

+ compactly representable and α easy to compute

− very uninformed heuristic

SAS+ Abstractions Pattern Databases Summary

Usually a Bad Idea: Identity Abstraction

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

identity abstraction: α(s) := s

+ perfect heuristic and α easy to compute

− too many abstract states computation of hα too hard

SAS+ Abstractions Pattern Databases Summary

Automatic Computation of Suitable Abstractions

Main Problem with Abstraction Heuristics

How to find a good abstraction?

Several successful methods:

pattern databases (PDBs) this course
(Culberson & Schaeffer, 1996)

merge-and-shrink abstractions
(Dräger, Finkbeiner & Podelski, 2006)

Cartesian abstractions
(Seipp & Helmert, 2013)

German: Musterdatenbanken, Merge-and-Shrink-Abstraktionen,
Kartesische Abstraktionen

SAS+ Abstractions Pattern Databases Summary

Pattern Databases

SAS+ Abstractions Pattern Databases Summary

Pattern Databases: Background

The most common abstraction heuristics are
pattern database heuristics.

originally introduced for the 15-puzzle (Culberson &
Schaeffer, 1996) and for Rubik’s Cube (Korf, 1997)

introduced for automated planning by Edelkamp (2001)

for many search problems the best known heuristics

many many research papers studying

theoretical properties
efficient implementation and application
pattern selection
. . .

SAS+ Abstractions Pattern Databases Summary

Pattern Databases: Projections

A PDB heuristic for a planning task is an abstraction heuristic
where

some aspects (= state variables) of the task
are preserved with perfect precision while

all other aspects are not preserved at all.

formalized as projections; example:

s = {v1 7→ d1, v2 7→ d2, v3 7→ d3}
projection on P = {v1} (= ignore v2, v3):
α(s) = s|P = {v1 7→ d1}
projection on P = {v1, v3} (= ignore v2):
α(s) = s|P = {v1 7→ d1, v3 7→ d3}

German: Projektionen

SAS+ Abstractions Pattern Databases Summary

Pattern Databases: Definition

Definition (pattern database heuristic)

Let P be a subset of the variables of a planning task.

The abstraction heuristic induced by the projection πP on P is
called pattern database heuristic (PDB heuristic) with pattern P.

abbreviated notation: hP for hπP

German: Musterdatenbank-Heuristik

remark:

“pattern databases” in analogy to endgame databases
(which have been successfully applied in 2-person-games)

SAS+ Abstractions Pattern Databases Summary

Example: Concrete State Space

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

state variable package: {L,R,A,B}
state variable truck A: {L,R}
state variable truck B: {L,R}

SAS+ Abstractions Pattern Databases Summary

Example: Projection (1)

abstraction induced by π{package}:

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

h{package}(LRR) = 2

SAS+ Abstractions Pattern Databases Summary

Example: Projection (2)

abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BLR

BLL BRR

BRL

BLL

BLR

BRR

BRL

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2

SAS+ Abstractions Pattern Databases Summary

Example: Projection (2)

abstraction induced by π{package,truck A}:

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

h{package,truck A}(LRR) = 2

SAS+ Abstractions Pattern Databases Summary

Pattern Databases in Practice

practical aspects which we do not discuss in detail:

How to automatically find good patterns?

How to combine multiple PDB heuristics?

How to implement PDB heuristics efficiently?

good implementations efficiently handle abstract state spaces
with 107, 108 or more abstract states
effort independent of the size of the concrete state space
usually all heuristic values are precomputed
 space complexity = number of abstract states

SAS+ Abstractions Pattern Databases Summary

Summary

SAS+ Abstractions Pattern Databases Summary

Summary

basic idea of abstraction heuristics: estimate solution cost
by considering a smaller planning task.

formally: abstraction function α maps states to abstract
states and thus defines which states can be distinguished
by the resulting heuristic.

induces abstract state space whose solution costs
are used as heuristic

Pattern database heuristics are abstraction heuristics
based on projections onto state variable subsets (patterns):
states are distinguishable iff they differ on the pattern.

	SAS+
	

	Abstractions
	

	Pattern Databases
	

	Summary
	

