

Foundations of Artificial Intelligence

36. Automated Planning: Delete Relaxation Heuristics

Malte Helmert

University of Basel

May 6, 2019

Automated Planning: Overview

Chapter overview: automated planning

- 33. Introduction
- 34. Planning Formalisms
- 35.–36. Planning Heuristics: Delete Relaxation
 - 35. Delete Relaxation
 - 36. Delete Relaxation Heuristics
- 37. Planning Heuristics: Abstraction
- 38.–39. Planning Heuristics: Landmarks

Relaxed Planning Graphs

Relaxed Planning Graphs

- **relaxed planning graphs**: represent which variables in Π^+ can be reached and how
- graphs with **variable layers** V^i and **action layers** A^i
 - variable layer V^0 contains the **variable vertex** v^0 for all $v \in I$
 - action layer A^{i+1} contains the **action vertex** a^{i+1} for action a if V^i contains the vertex v^i for all $v \in \text{pre}(a)$
 - variable layer V^{i+1} contains the variable vertex v^{i+1} if previous variable layer contains v^i , or previous action layer contains a^{i+1} with $v \in \text{add}(a)$

German: relaxierter Planungsgraph, Variablenknoten, Aktionsknoten

Relaxed Planning Graphs (Continued)

- **goal vertices** G^i if $v^i \in V^i$ for all $v \in G$
- graph can be constructed for arbitrary many layers but stabilizes after a bounded number of layers
 $\rightsquigarrow V^{i+1} = V^i$ and $A^{i+1} = A^i$ ([Why?](#))
- directed edges:
 - from v^i to a^{i+1} if $v \in \text{pre}(a)$ (**precondition edges**)
 - from a^i to v^i if $v \in \text{add}(a)$ (**effect edges**)
 - from v^i to G^i if $v \in G$ (**goal edges**)
 - from v^i to v^{i+1} (**no-op edges**)

[German](#): Zielknoten, Vorbedingungskanten, Effektkanten, Zielkanten, No-Op-Kanten

Illustrative Example

We will write actions a with $pre(a) = \{p_1, \dots, p_k\}$, $add(a) = \{a_1, \dots, a_l\}$, $del(a) = \emptyset$ and $cost(a) = c$ as $p_1, \dots, p_k \xrightarrow{c} a_1, \dots, a_l$

$$V = \{a, b, c, d, e, f, g, h\}$$

$$I = \{a\}$$

$$G = \{c, d, e, f, g\}$$

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

$$a_1 = a \xrightarrow{3} b, c$$

$$a_2 = a, c \xrightarrow{1} d$$

$$a_3 = b, c \xrightarrow{1} e$$

$$a_4 = b \xrightarrow{1} f$$

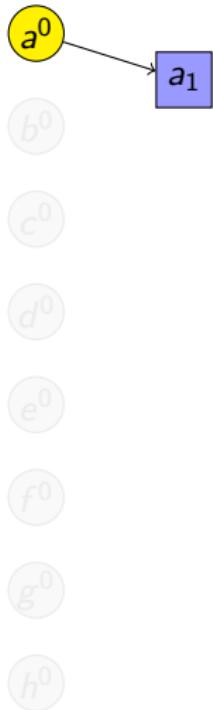
$$a_5 = d \xrightarrow{1} e, f$$

$$a_6 = d \xrightarrow{1} g$$

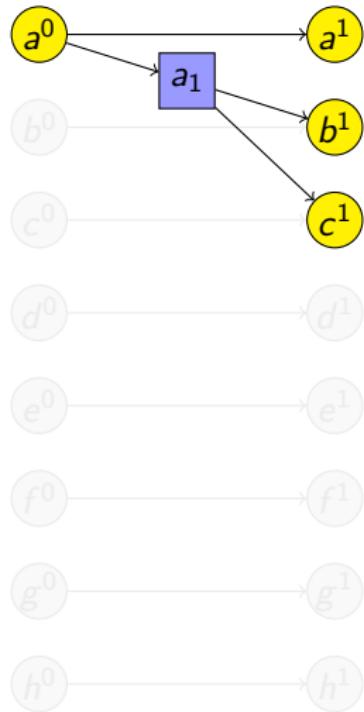
Illustrative Example: Relaxed Planning Graph

 a^0 b^0 c^0 d^0 e^0 f^0 g^0 h^0

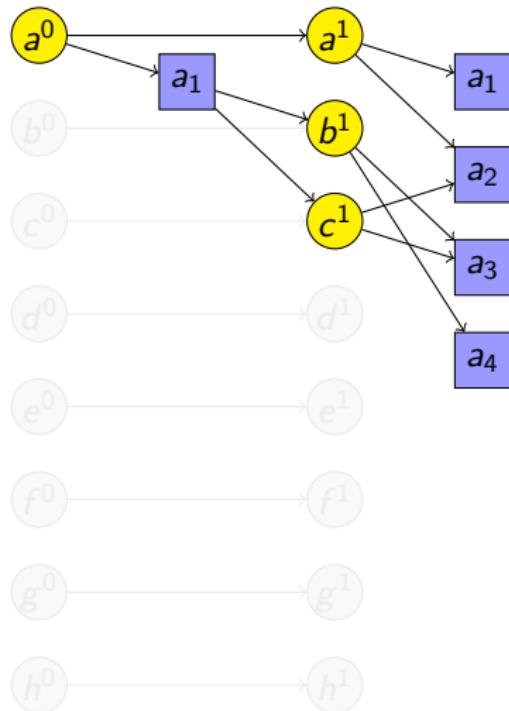
Illustrative Example: Relaxed Planning Graph



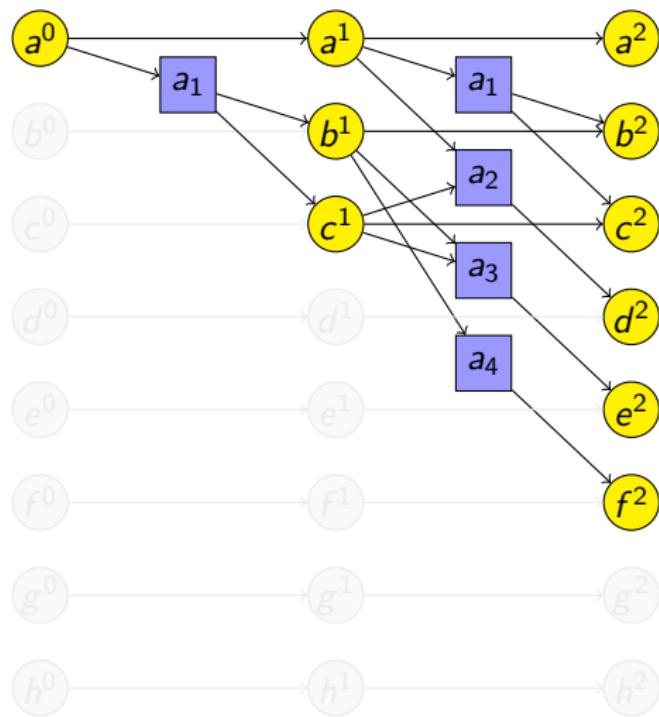
Illustrative Example: Relaxed Planning Graph



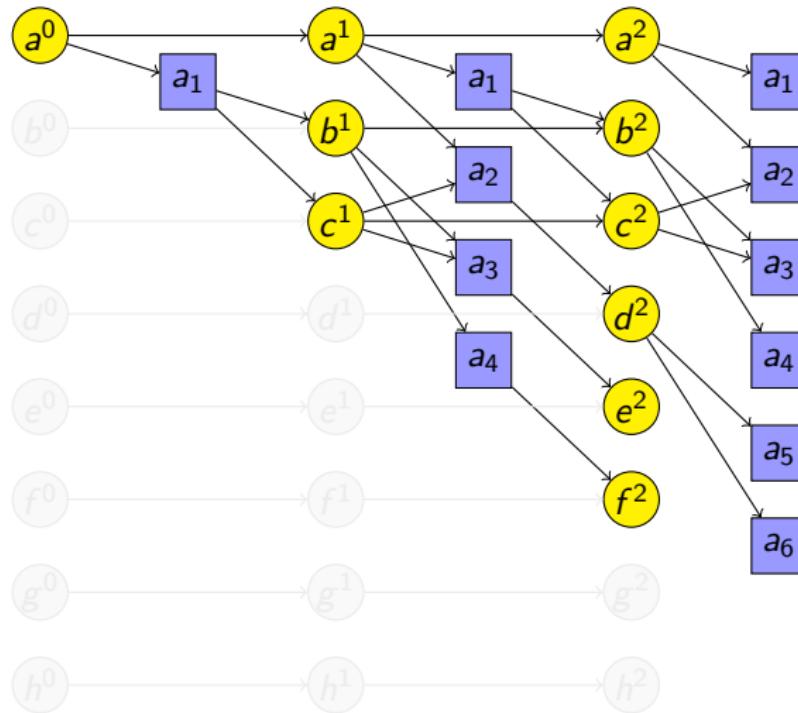
Illustrative Example: Relaxed Planning Graph



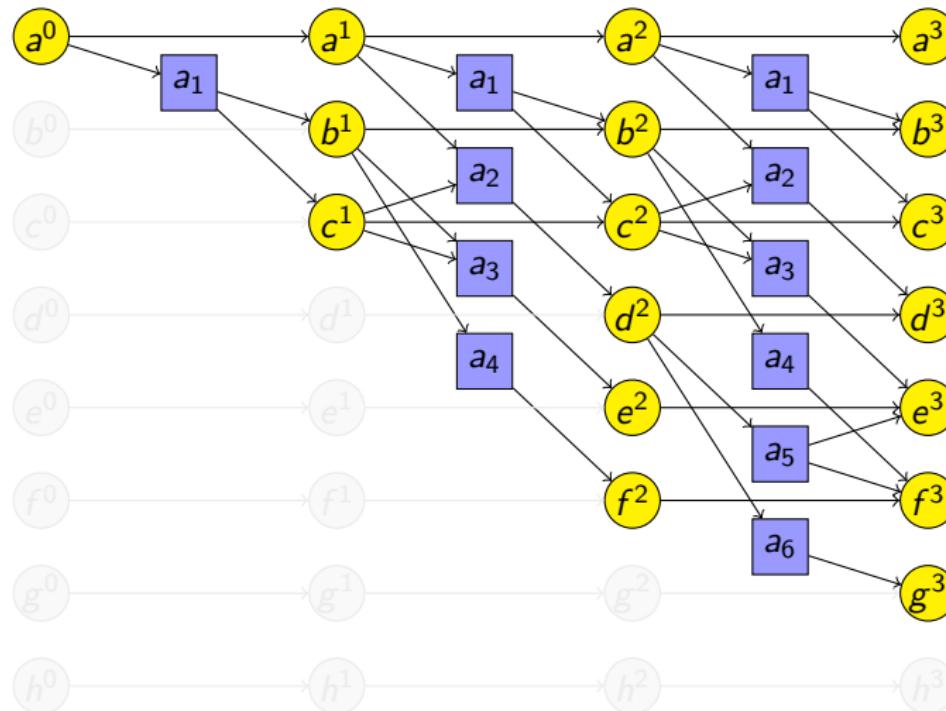
Illustrative Example: Relaxed Planning Graph



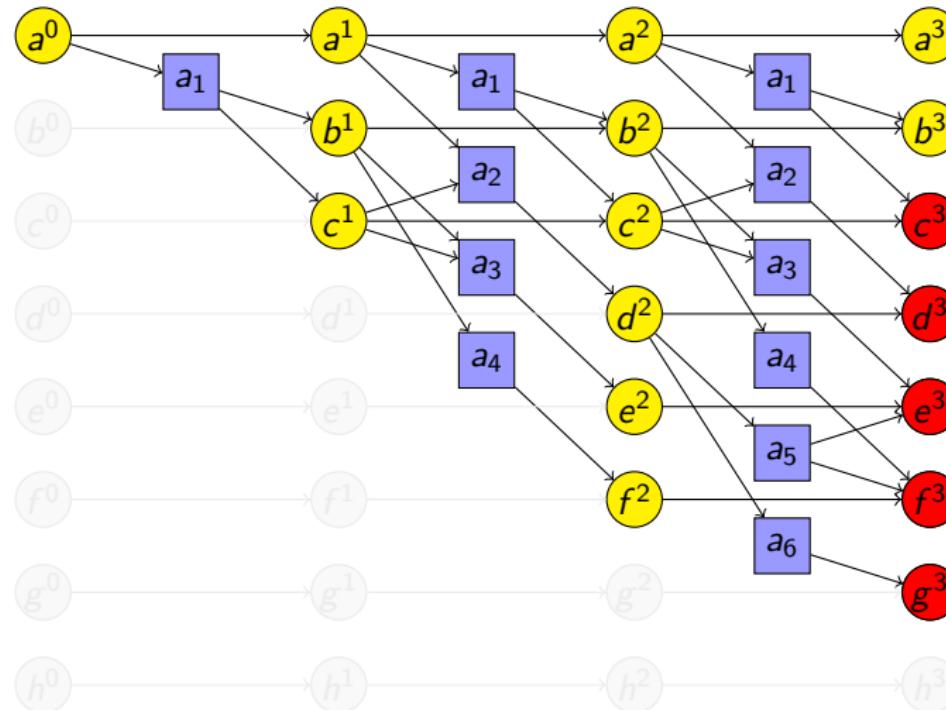
Illustrative Example: Relaxed Planning Graph



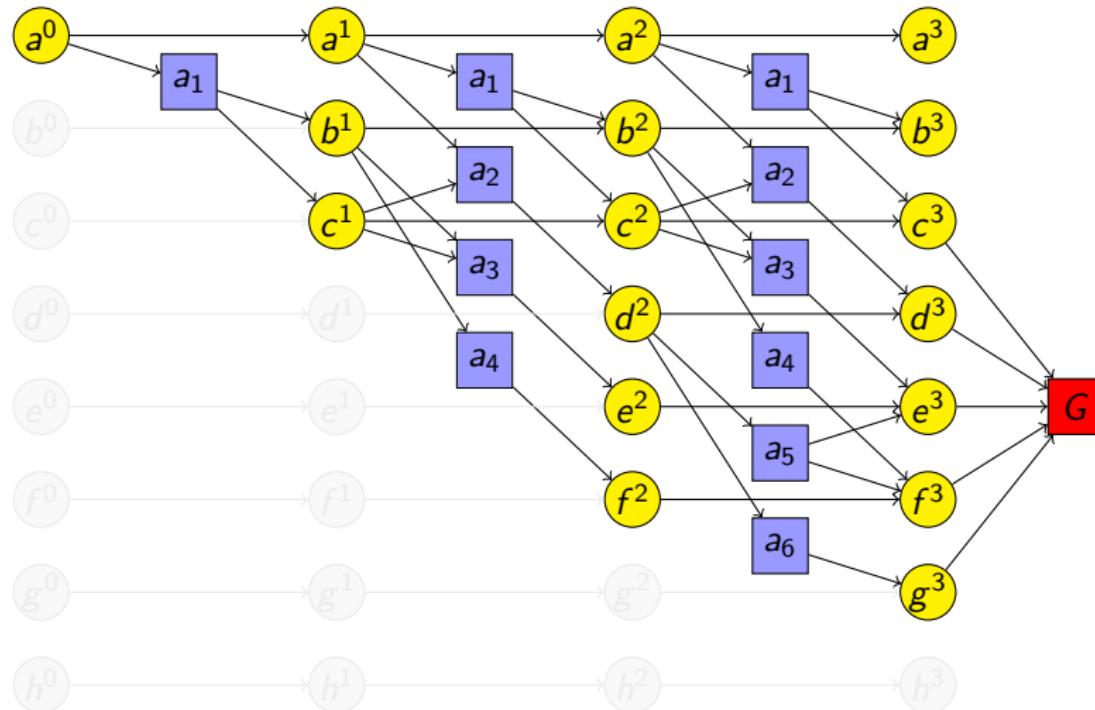
Illustrative Example: Relaxed Planning Graph



Illustrative Example: Relaxed Planning Graph



Illustrative Example: Relaxed Planning Graph



Generic Relaxed Planning Graph Heuristic

Heuristic Values from Relaxed Planning Graph

```
function generic-rpg-heuristic( $\langle V, I, G, A \rangle, s$ ):  
     $\Pi^+ := \langle V, s, G, A^+ \rangle$   
    for  $k \in \{0, 1, 2, \dots\}$ :  
         $rpg := RPG_k(\Pi^+)$       [relaxed planning graph to layer  $k$ ]  
        if  $rpg$  contains a goal node:  
            Annotate nodes of  $rpg$ .  
            if termination criterion is true:  
                return heuristic value from annotations  
        else if graph has stabilized:  
            return  $\infty$ 
```

- ~ \rightarrow general template for RPG heuristics
- ~ \rightarrow to obtain concrete heuristic: instantiate highlighted elements

Concrete Examples for Generic RPG Heuristic

Many planning heuristics fit this general template.

In this course:

- maximum heuristic h^{\max} (Bonet & Geffner, 1999)
- additive heuristic h^{add} (Bonet, Loerincs & Geffner, 1997)
- Keyder & Geffner's (2008) variant of the FF heuristic h^{FF} (Hoffmann & Nebel, 2001)

German: Maximum-Heuristik, additive Heuristik, FF-Heuristik

remark:

- The most efficient implementations of these heuristics do not use explicit planning graphs, but rather alternative (equivalent) definitions.

Maximum and Additive Heuristics

Maximum and Additive Heuristics

- h^{\max} and h^{add} are the simplest RPG heuristics.
- Vertex annotations are **numerical values**.
- The vertex values estimate the costs
 - to make a given variable true
 - to reach and apply a given action
 - to reach the goal

Maximum and Additive Heuristics: Filled-in Template

h^{\max} and h^{add}

computation of annotations:

- costs of variable vertices:
 - 0 in layer 0;
 - otherwise **minimum** of the costs of predecessor vertices
- costs of action and goal vertices:
 - maximum** (h^{\max}) or **sum** (h^{add}) of predecessor vertex costs;
 - for action vertices a^i , also add $\text{cost}(a)$

termination criterion:

- **stability:** terminate if $V^i = V^{i-1}$ and costs of all vertices in V^i equal corresponding vertex costs in V^{i-1}

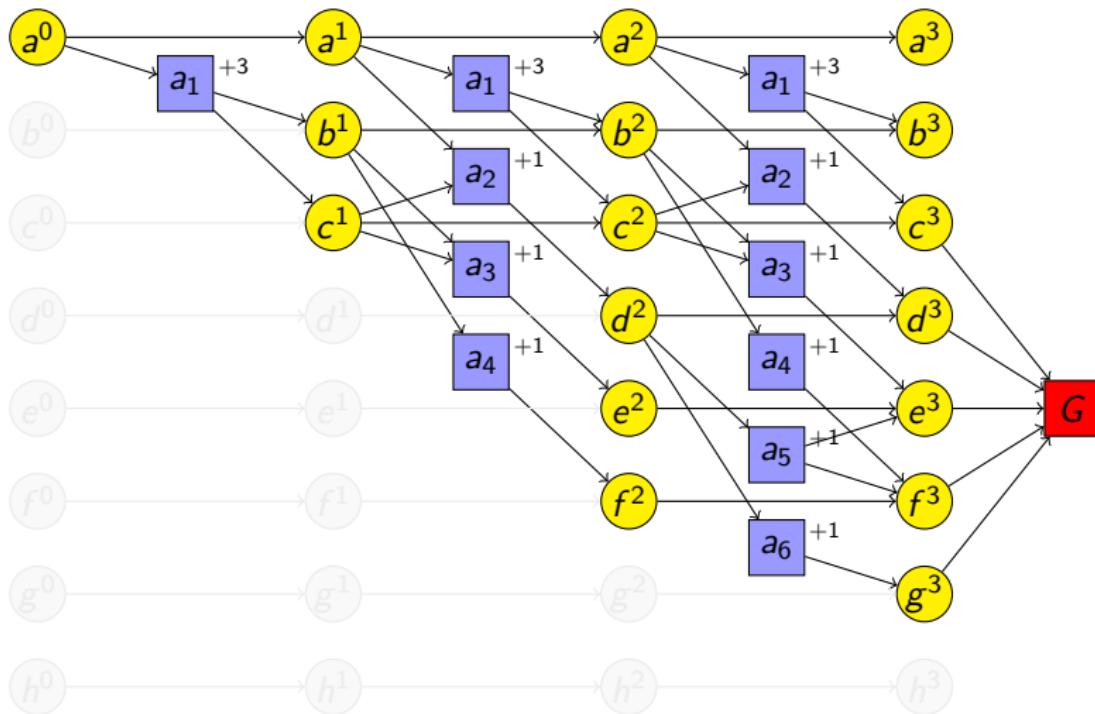
heuristic value:

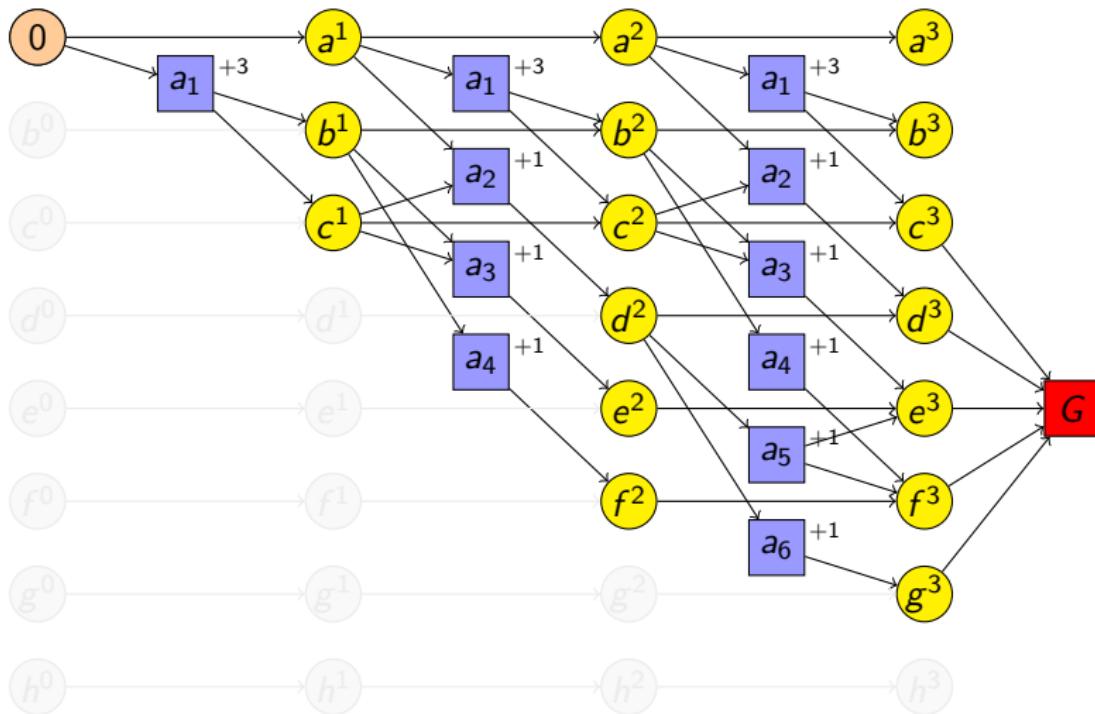
- value of goal vertex in the last layer

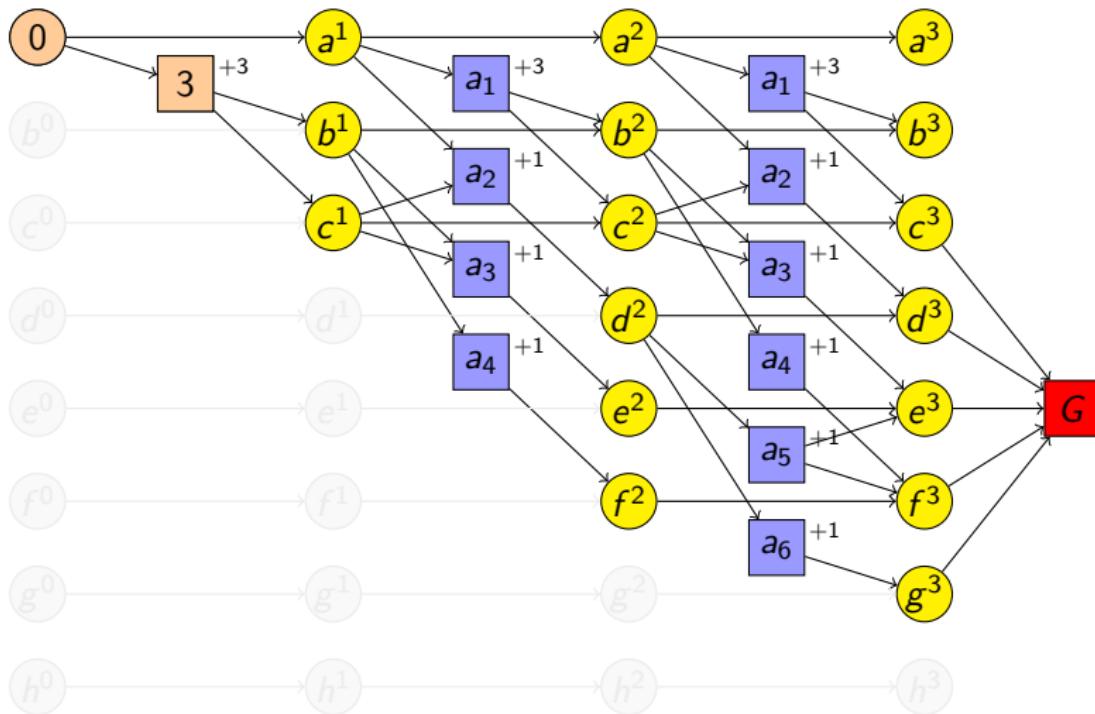
Maximum and Additive Heuristics: Intuition

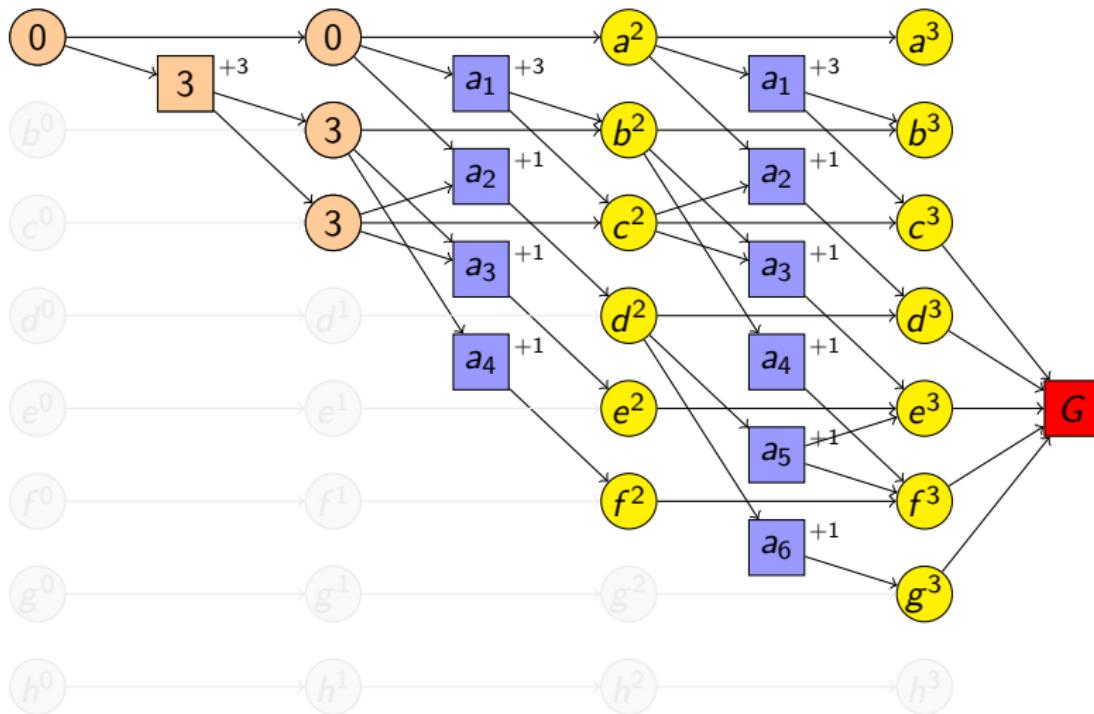
intuition:

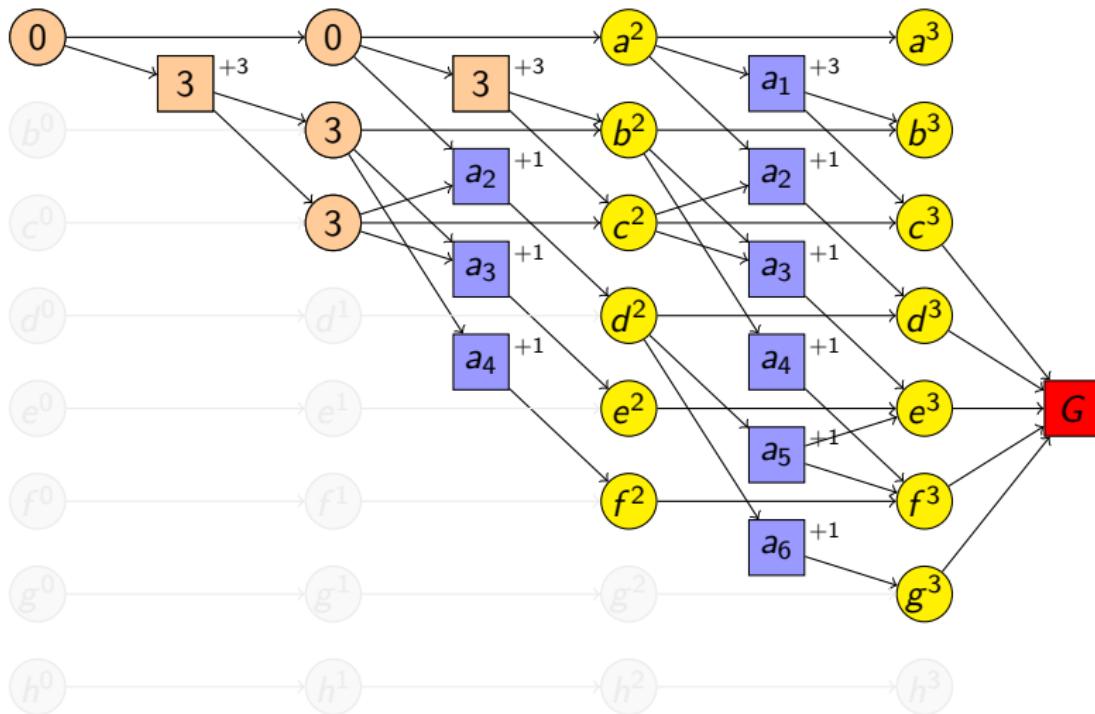
- variable vertices:
 - choose **cheapest** way of reaching the variable
- action/goal vertices:
 - h^{\max} is **optimistic**: assumption:
when reaching the **most expensive** precondition variable,
we can reach the other precondition variables in parallel
(hence maximization of costs)
 - h^{add} is **pessimistic**: assumption:
all precondition variables must be reached completely
independently of each other (hence summation of costs)

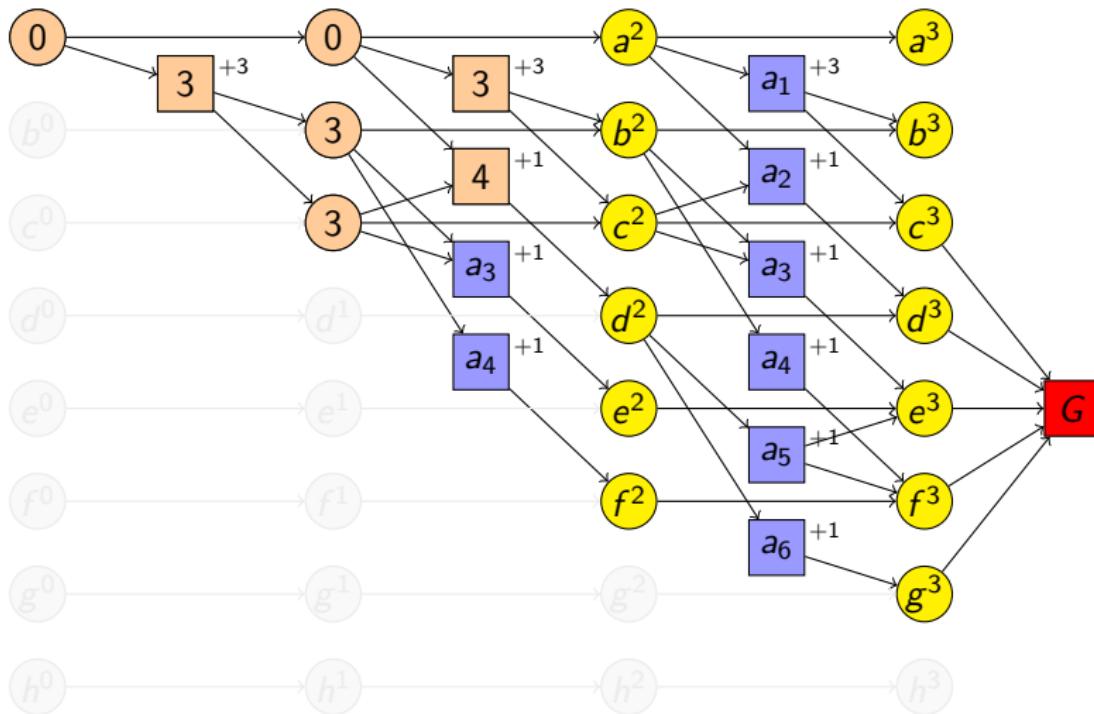
Illustrative Example: h^{\max} 

Illustrative Example: h^{\max} 

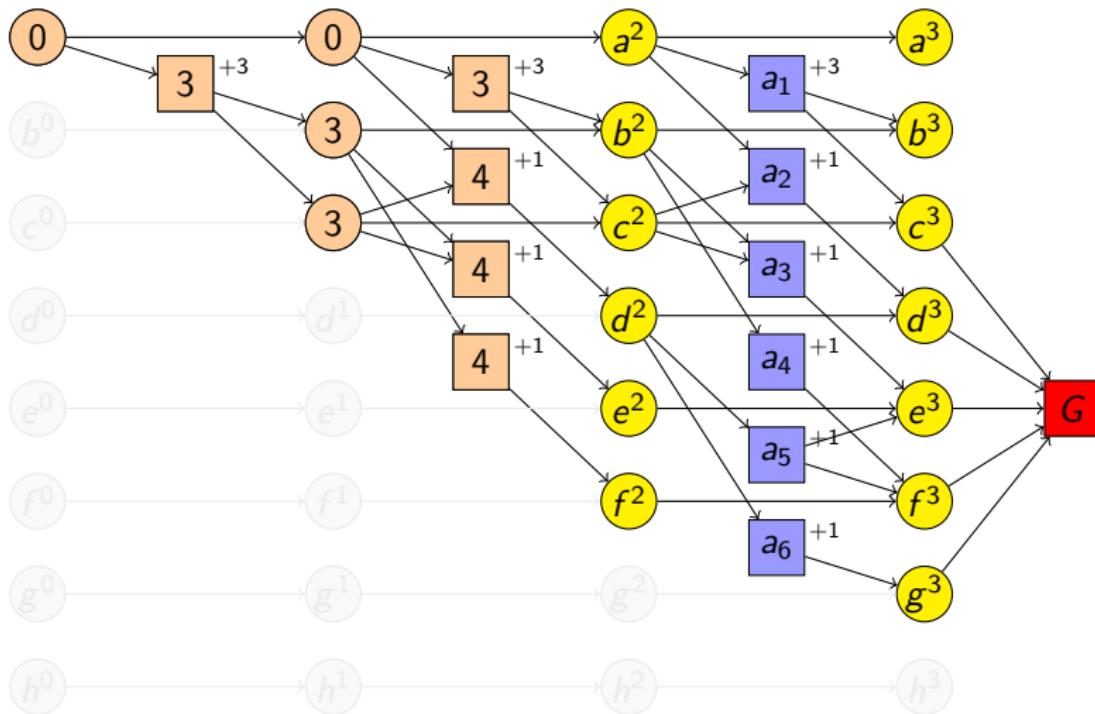
Illustrative Example: h^{\max} 

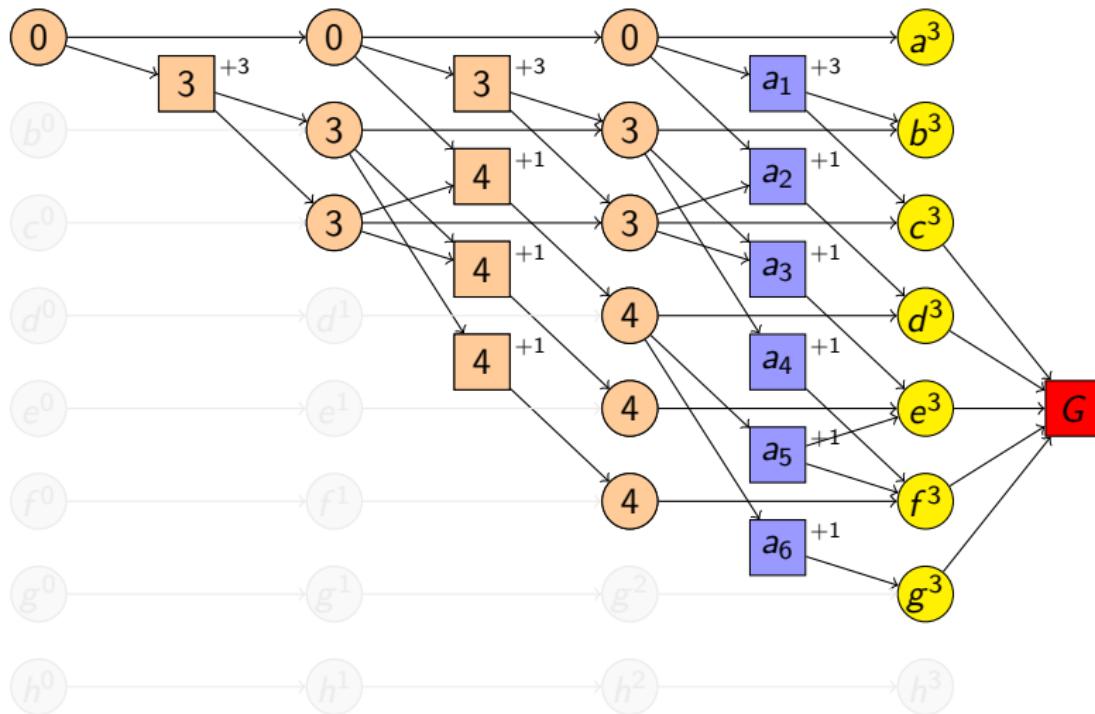
Illustrative Example: h^{\max} 

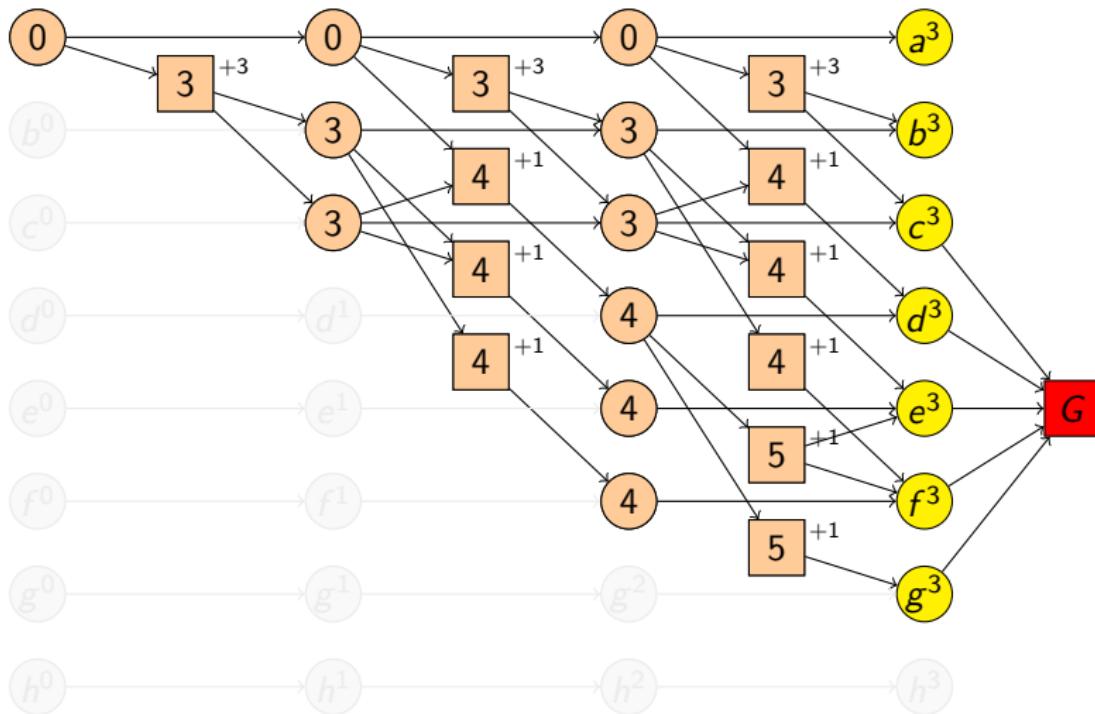
Illustrative Example: h^{\max} 

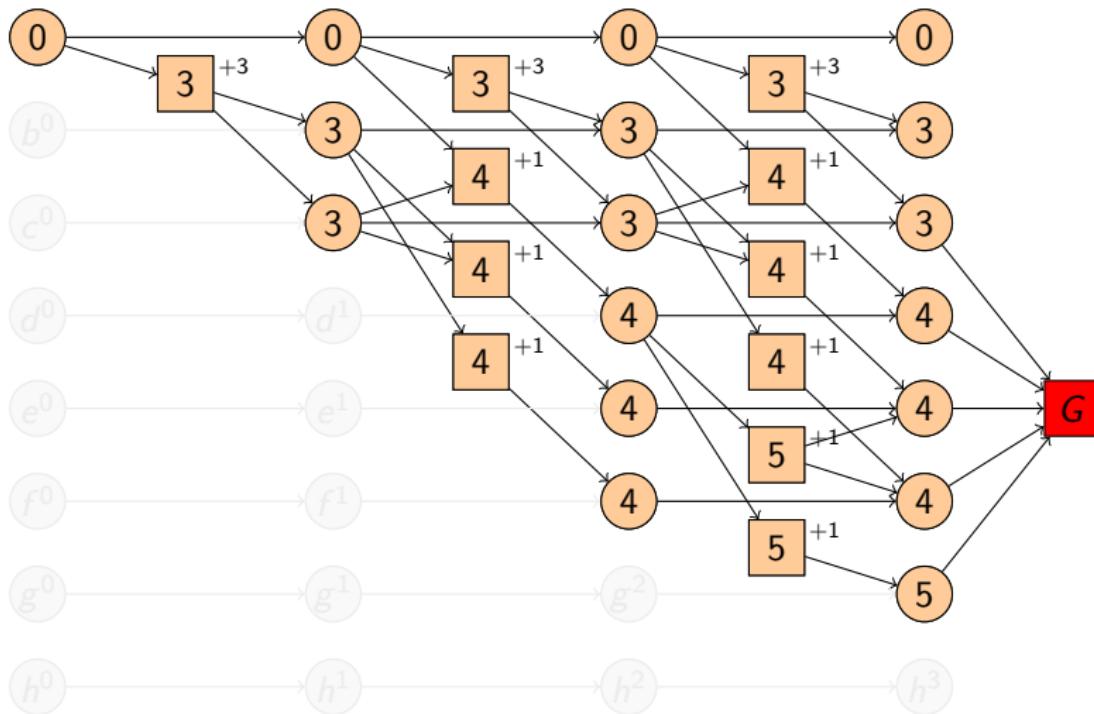
Illustrative Example: h^{\max} 

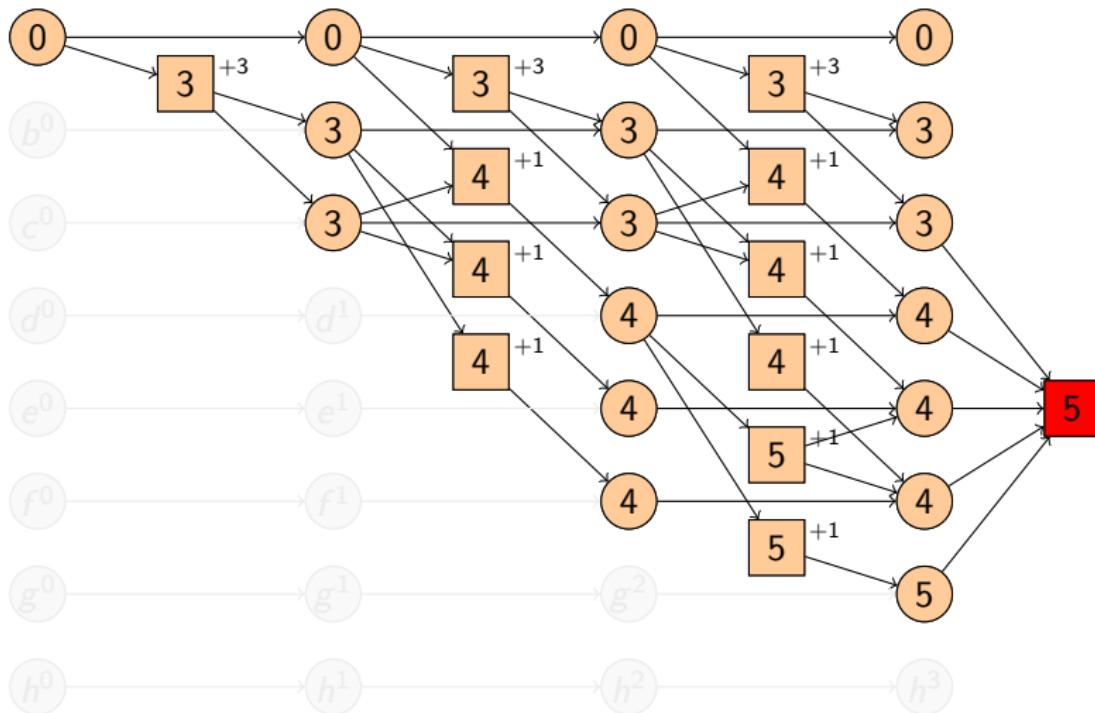
Illustrative Example: h^{\max}



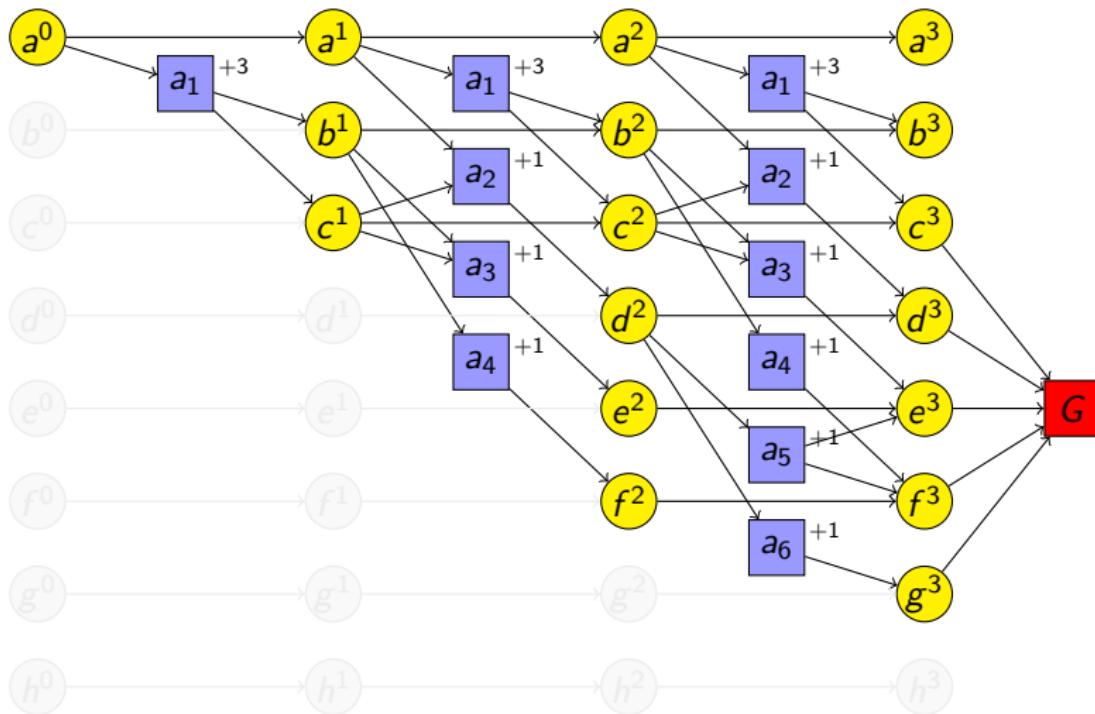
Illustrative Example: h^{\max} 

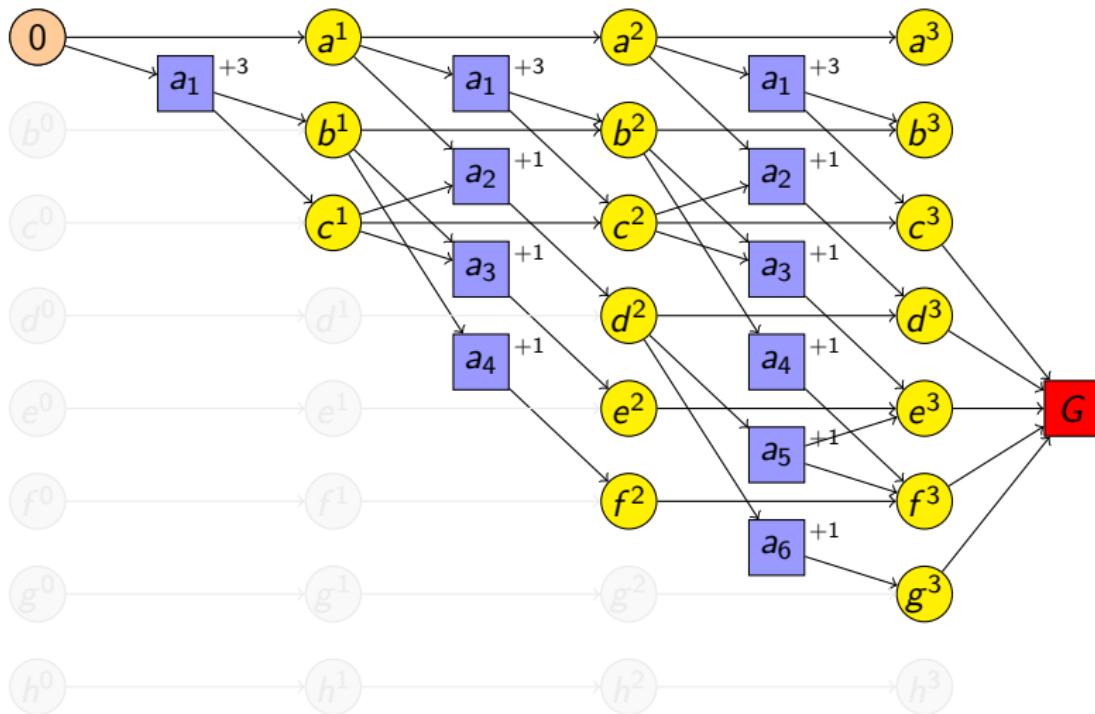
Illustrative Example: h^{\max} 

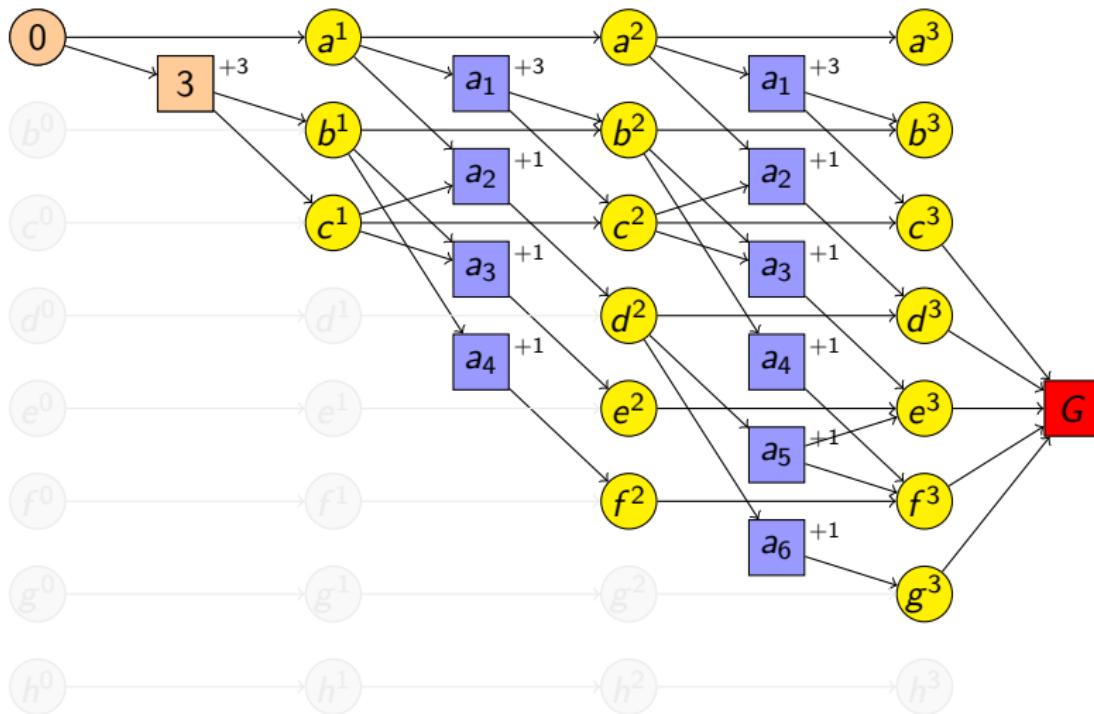
Illustrative Example: h^{\max} 

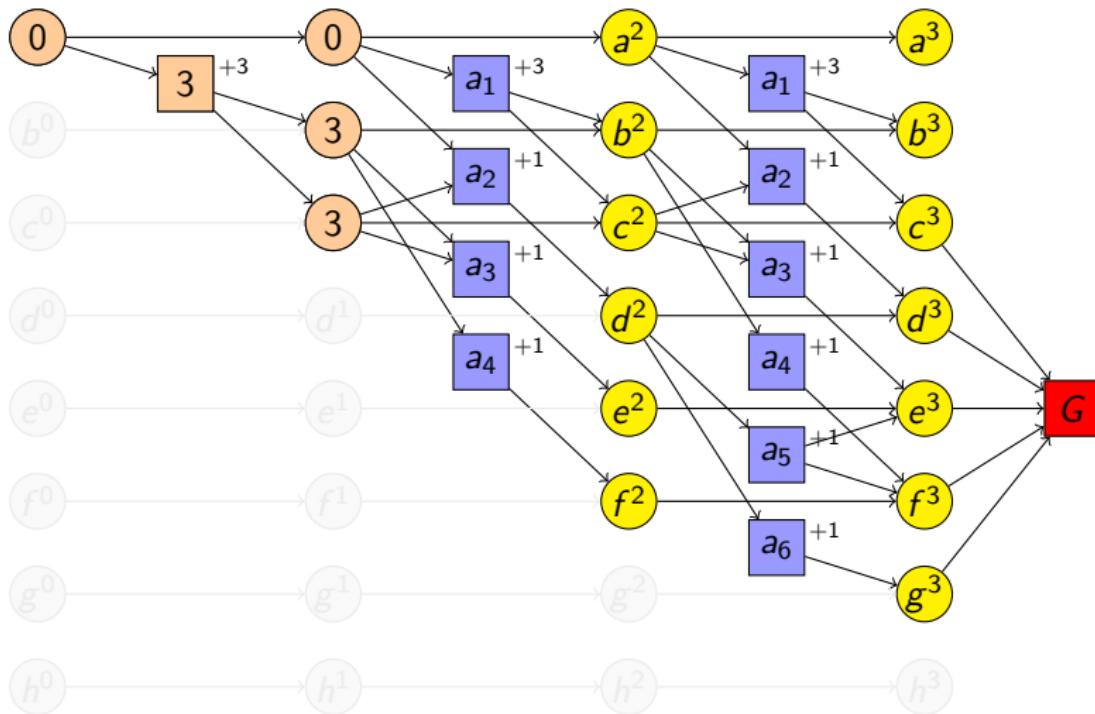
Illustrative Example: h^{\max} 

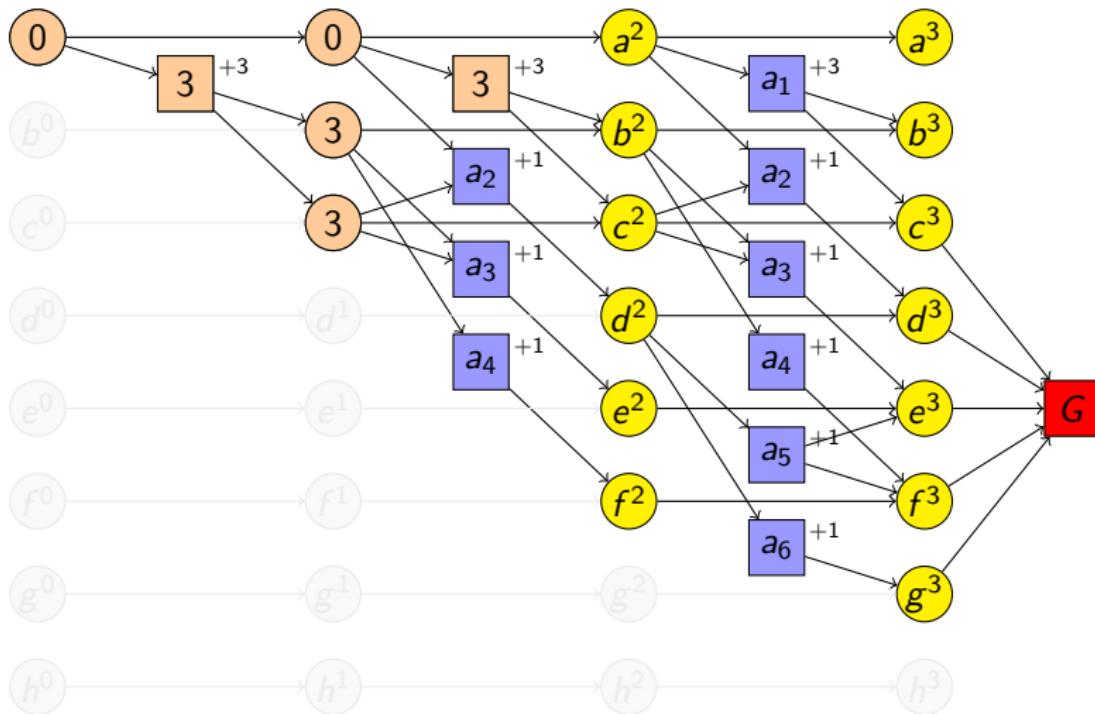
$$h^{\max}(\{a\}) = 5$$

Illustrative Example: h^{add} 

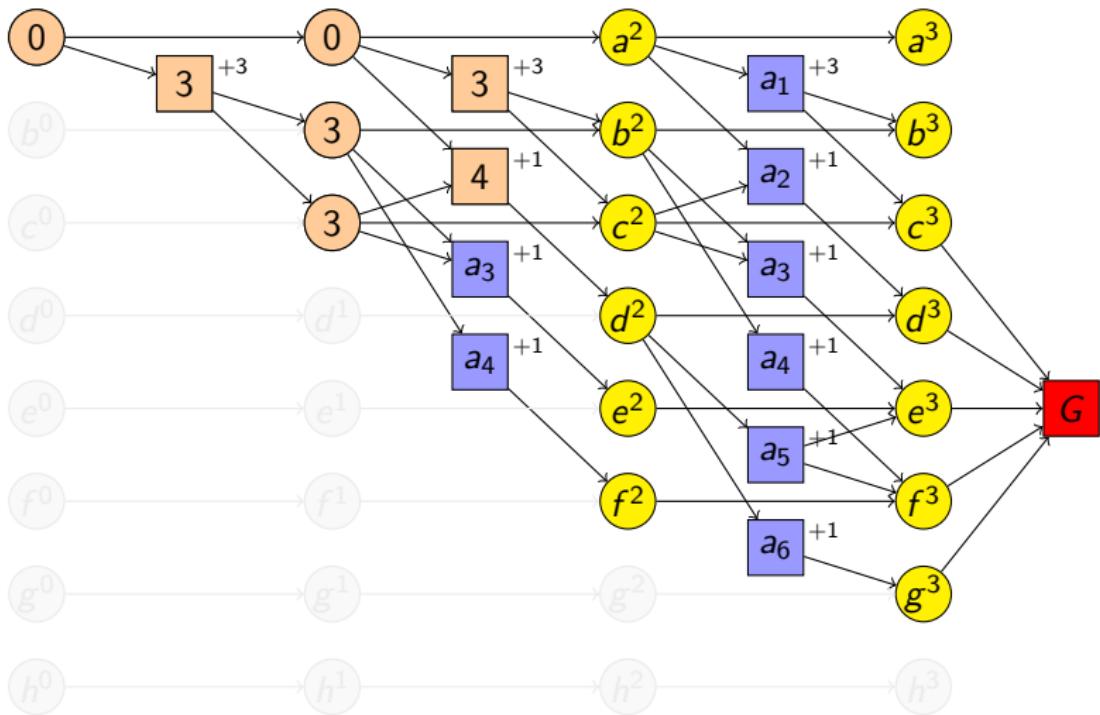
Illustrative Example: h^{add} 

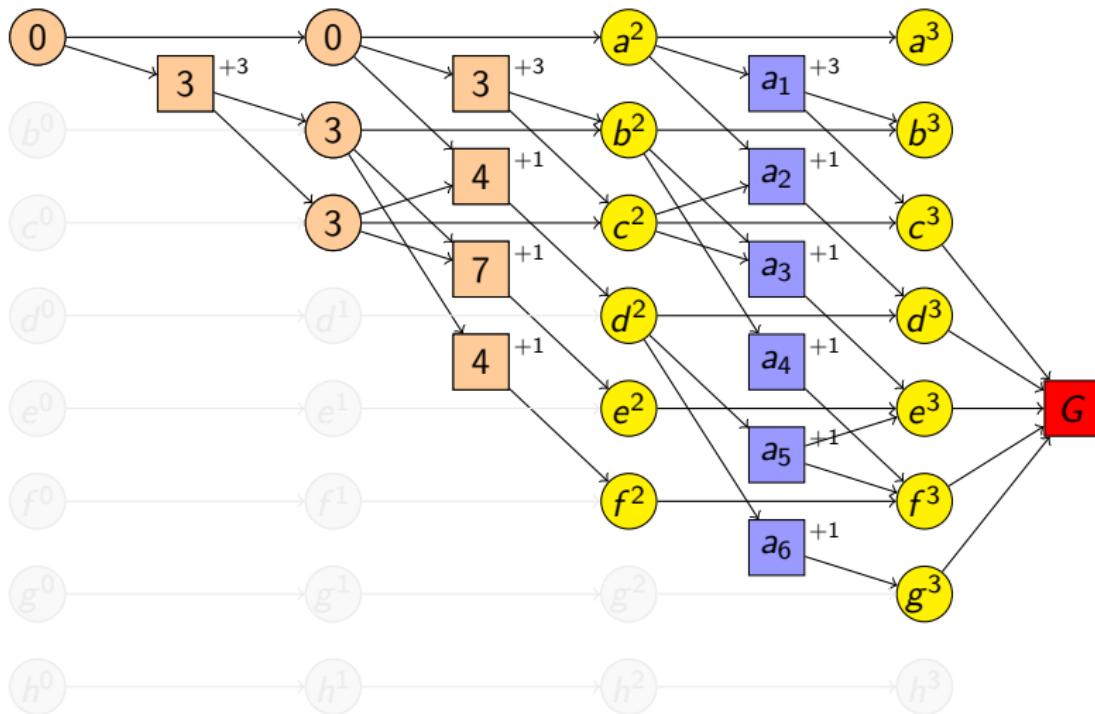
Illustrative Example: h^{add} 

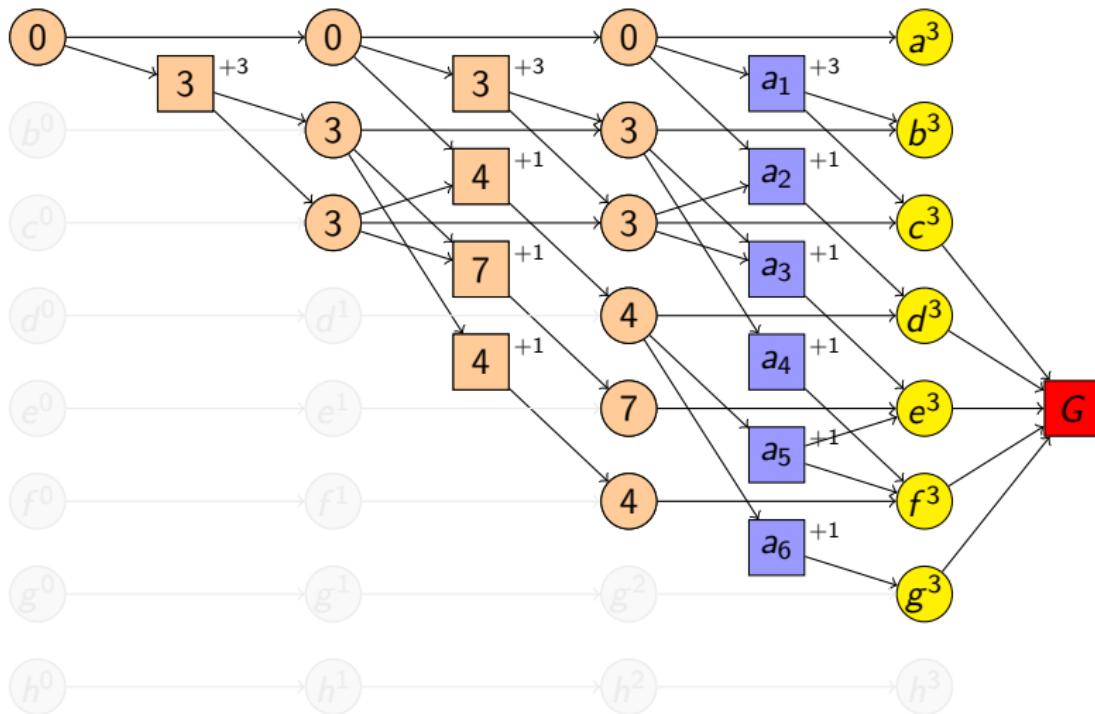
Illustrative Example: h^{add} 

Illustrative Example: h^{add} 

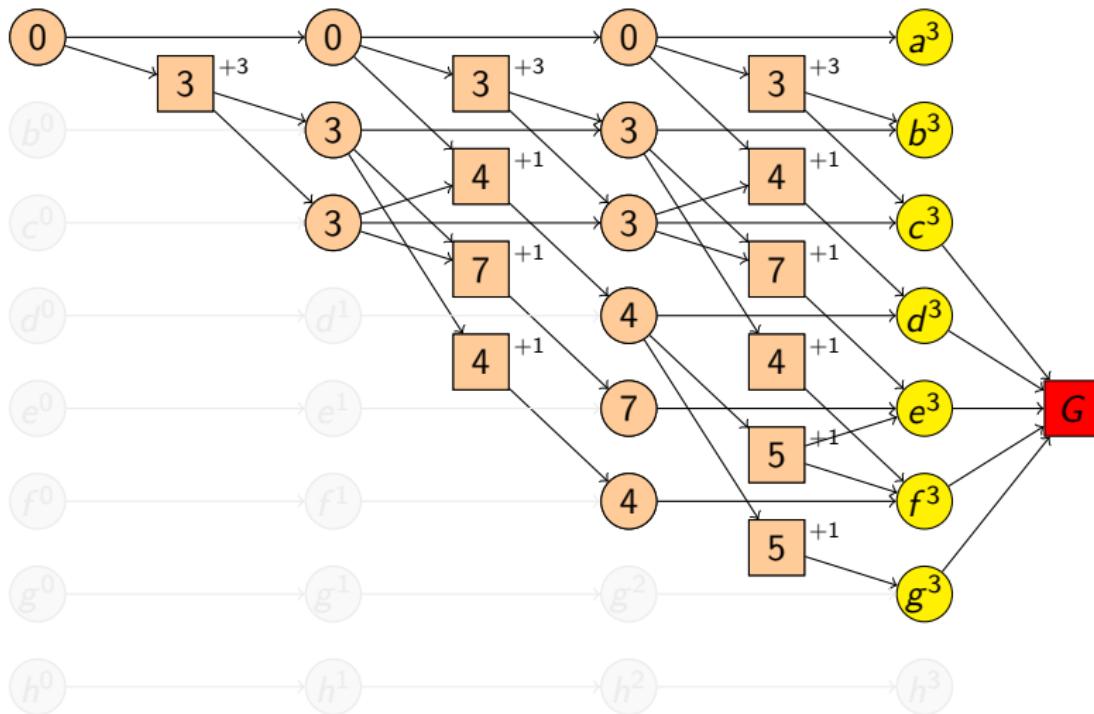
Illustrative Example: h^{add}



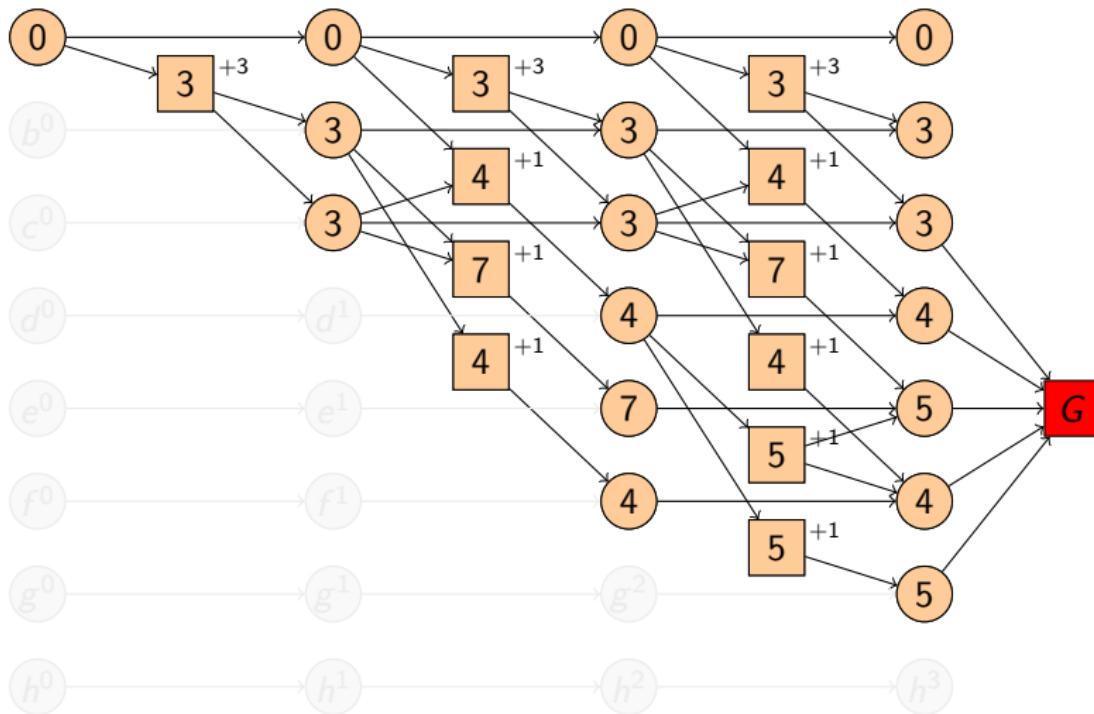
Illustrative Example: h^{add} 

Illustrative Example: h^{add} 

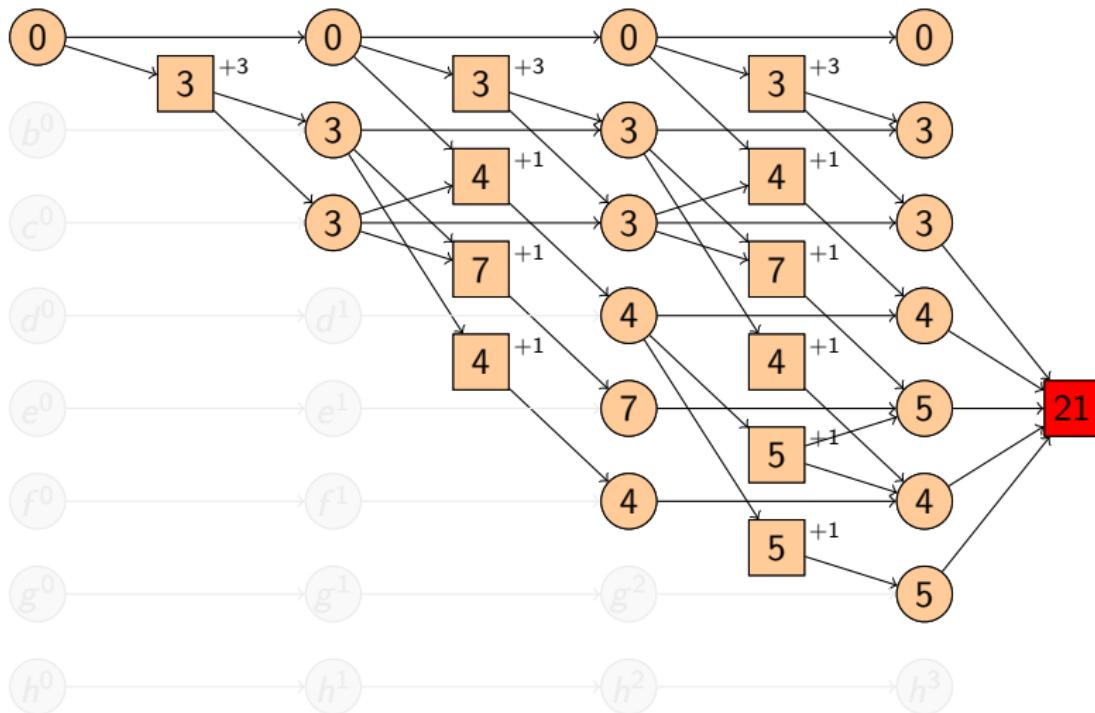
Illustrative Example: h^{add}



Illustrative Example: h^{add}



Illustrative Example: h^{add}



$$h^{\text{add}}(\{a\}) = 21$$

h^{\max} and h^{add} : Remarks

comparison of h^{\max} and h^{add} :

- both are safe and goal-aware
- h^{\max} is admissible and consistent; h^{add} is neither.
- ~~> h^{add} not suited for **optimal** planning

h^{\max} and h^{add} : Remarks

comparison of h^{\max} and h^{add} :

- both are safe and goal-aware
- h^{\max} is admissible and consistent; h^{add} is neither.
 - ⇝ h^{add} not suited for **optimal** planning
- However, h^{add} is usually **much more informative** than h^{\max} .
Greedy best-first search with h^{add} is a decent algorithm.

h^{\max} and h^{add} : Remarks

comparison of h^{\max} and h^{add} :

- both are safe and goal-aware
- h^{\max} is admissible and consistent; h^{add} is neither.
~~~  $h^{\text{add}}$  not suited for **optimal** planning
- However,  $h^{\text{add}}$  is usually **much more informative** than  $h^{\max}$ .  
Greedy best-first search with  $h^{\text{add}}$  is a decent algorithm.
- Apart from not being admissible,  $h^{\text{add}}$  often **vastly** overestimates the actual costs because  
**positive synergies** between subgoals are not recognized.

# $h^{\max}$ and $h^{\text{add}}$ : Remarks

comparison of  $h^{\max}$  and  $h^{\text{add}}$ :

- both are safe and goal-aware
- $h^{\max}$  is admissible and consistent;  $h^{\text{add}}$  is neither.
  - ~ $h^{\text{add}}$  not suited for **optimal** planning
- However,  $h^{\text{add}}$  is usually **much more informative** than  $h^{\max}$ .  
Greedy best-first search with  $h^{\text{add}}$  is a decent algorithm.
- Apart from not being admissible,  $h^{\text{add}}$  often **vastly** overestimates the actual costs because  
**positive synergies** between subgoals are not recognized.
- ~ $\rightsquigarrow$  FF heuristic

Relaxed Planning Graphs  
oooooooo

Maximum and Additive Heuristics  
oooooooo

FF Heuristic  
●oooo

Summary  
oo

# FF Heuristic

# FF Heuristic

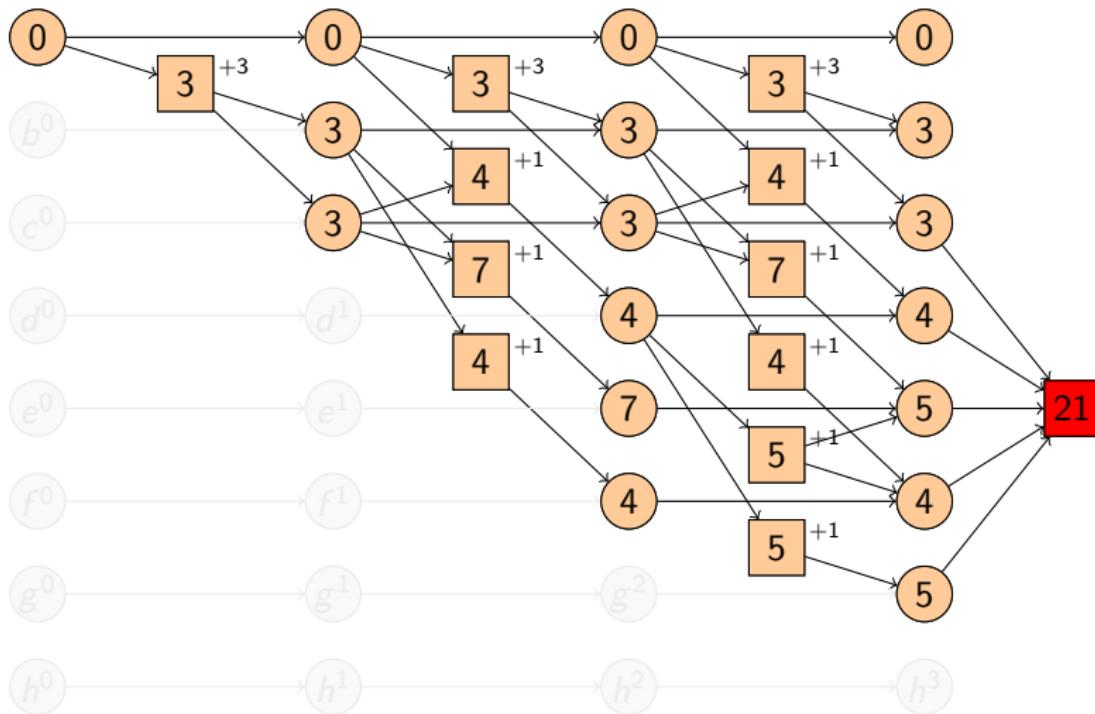
## The FF Heuristic

identical to  $h^{\text{add}}$ , but **additional steps** at the end:

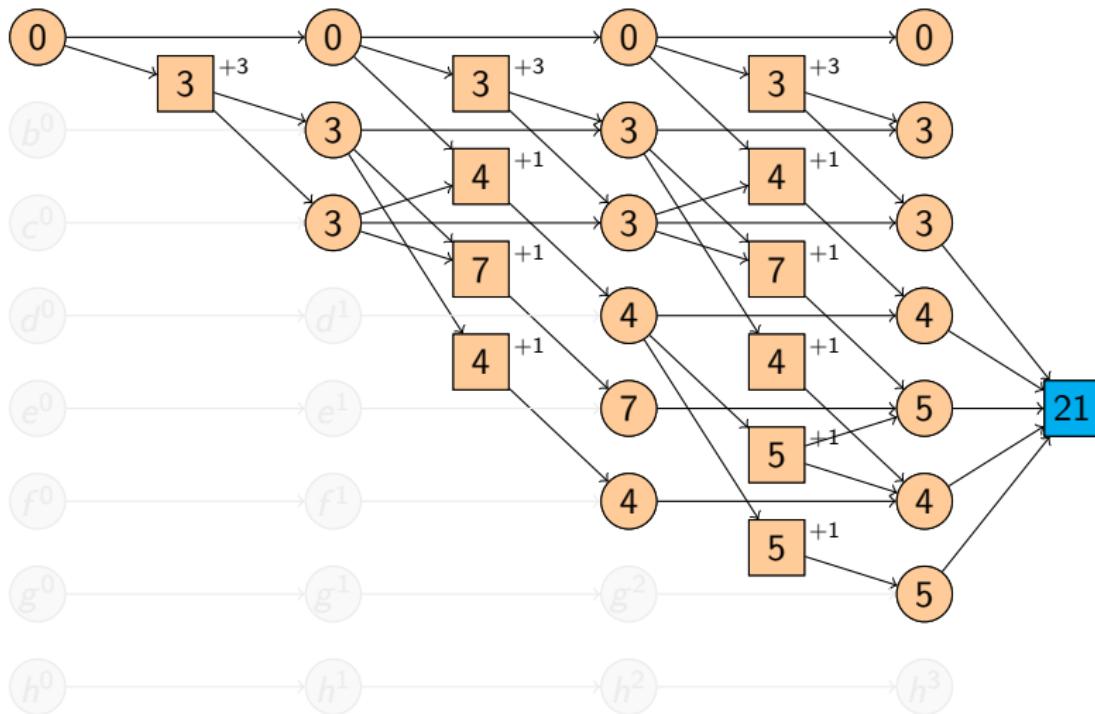
- **Mark** goal vertex in the last graph layer.
- Apply the following **marking rules** until nothing more to do:
  - marked action or goal vertex?  
~~ mark **all** predecessors
  - marked variable vertex  $v^i$  in layer  $i \geq 1$ ?  
~~ mark **one** predecessor with **minimal**  $h^{\text{add}}$  value  
(tie-breaking: prefer variable vertices; otherwise arbitrary)

heuristic value:

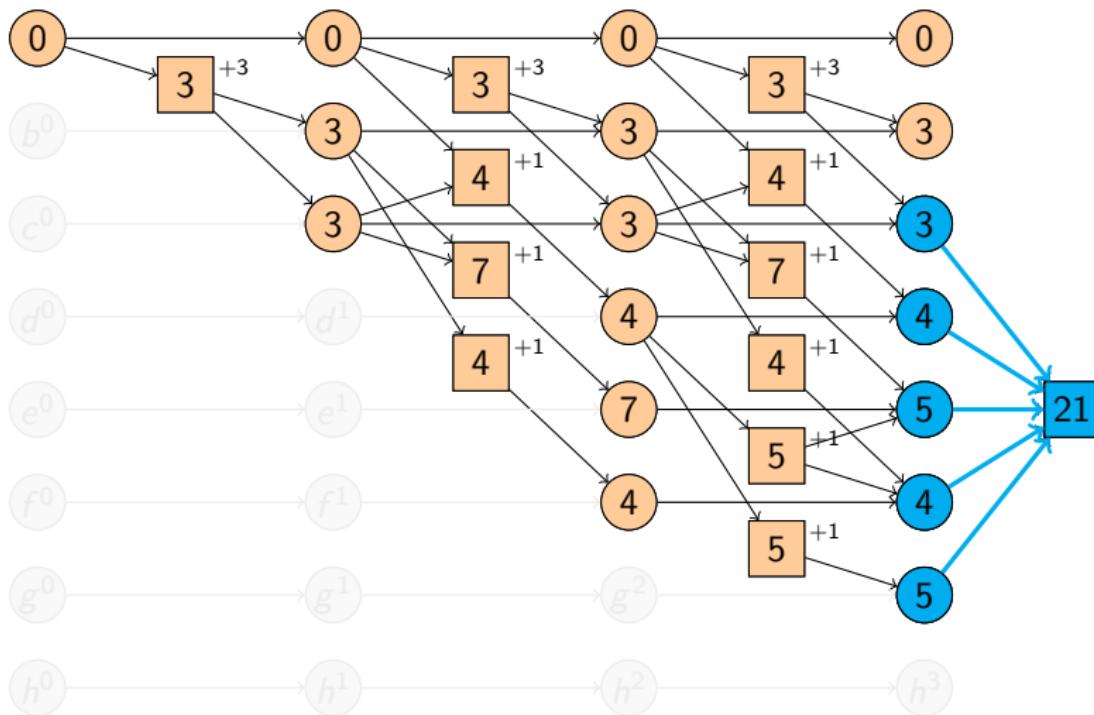
- The actions corresponding to the marked action vertices build a relaxed plan.
- The **cost of this plan** is the heuristic value.

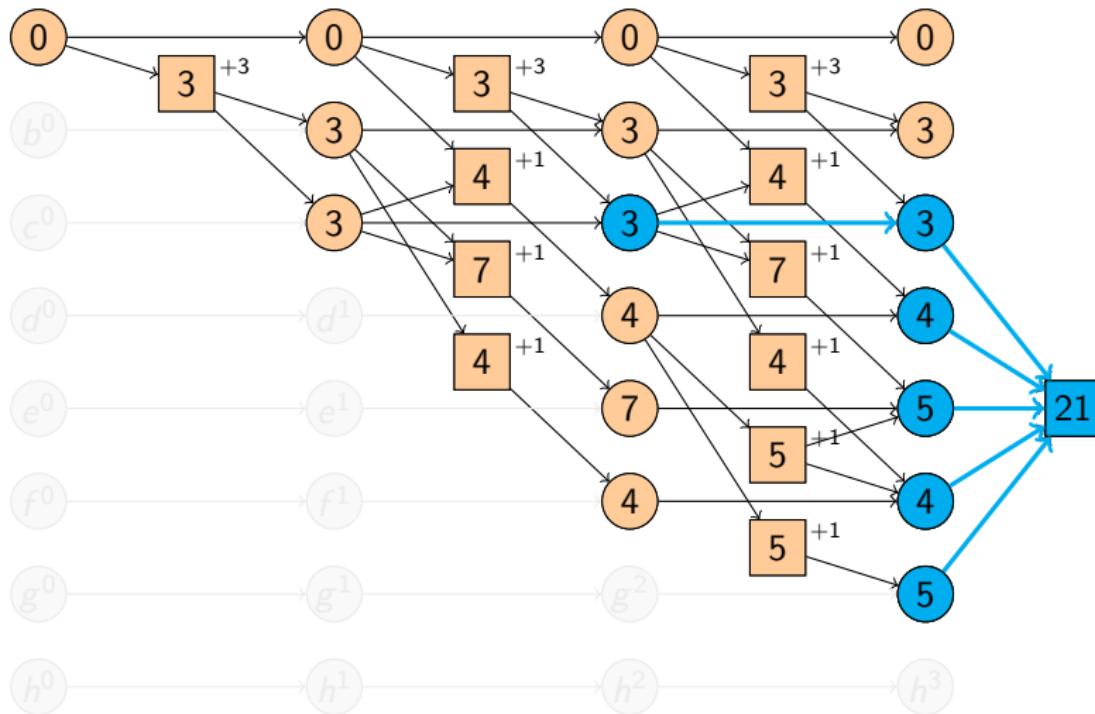
Illustrative Example:  $h^{\text{FF}}$ 

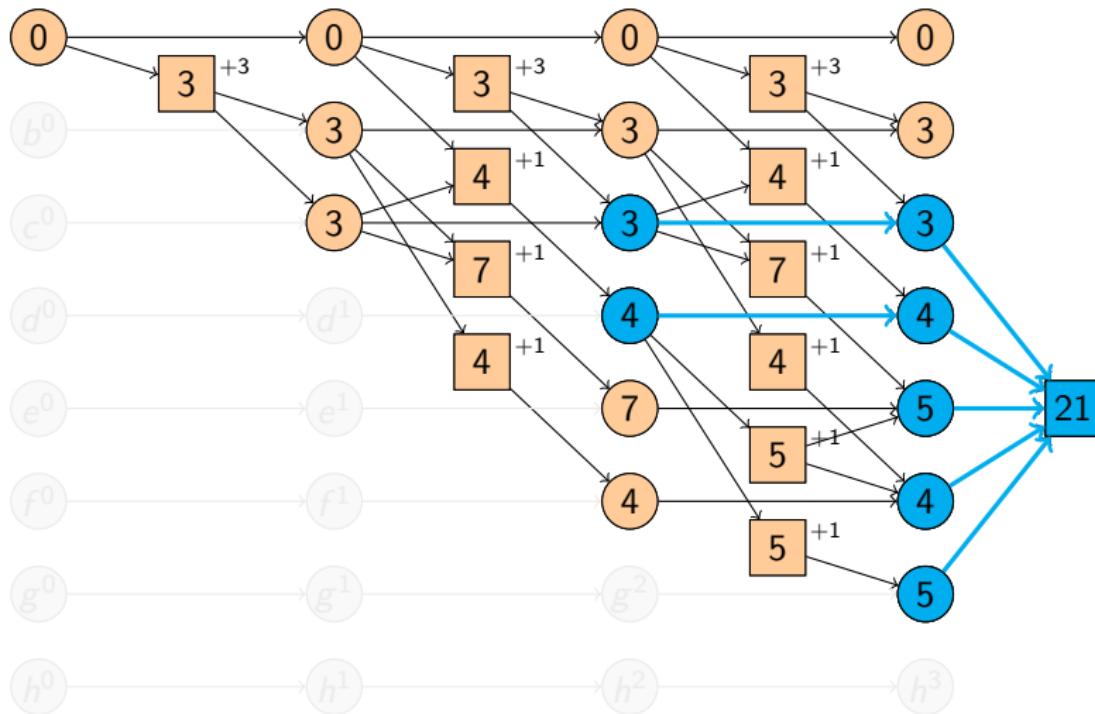
## Illustrative Example: $h^{\text{FF}}$

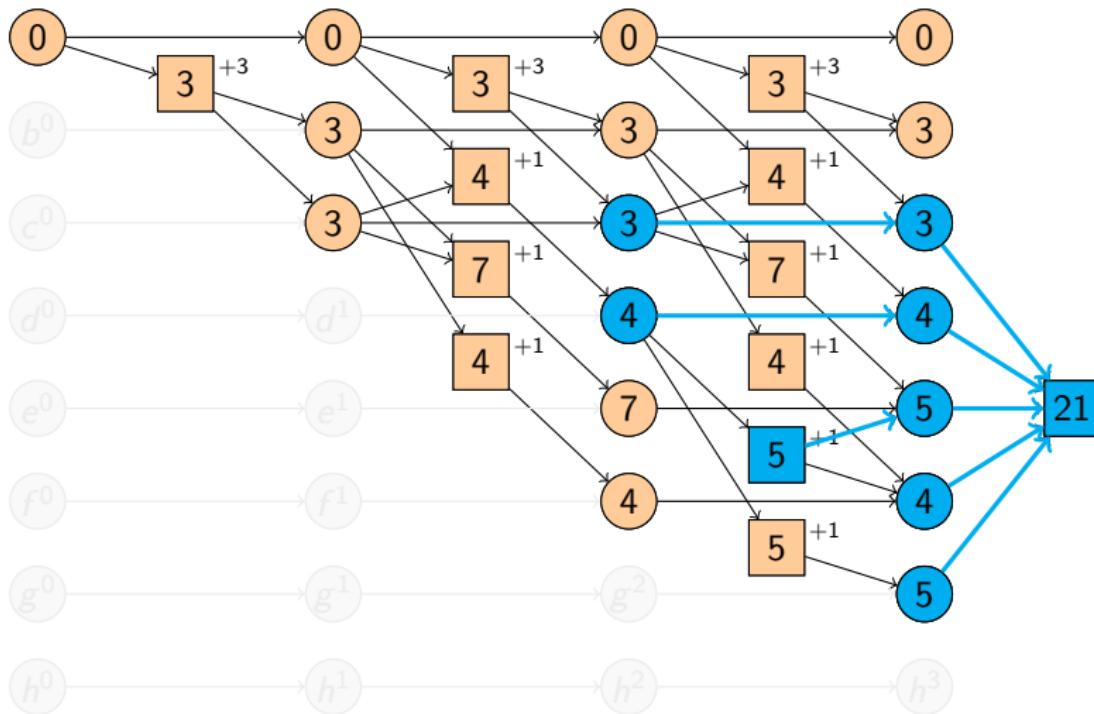


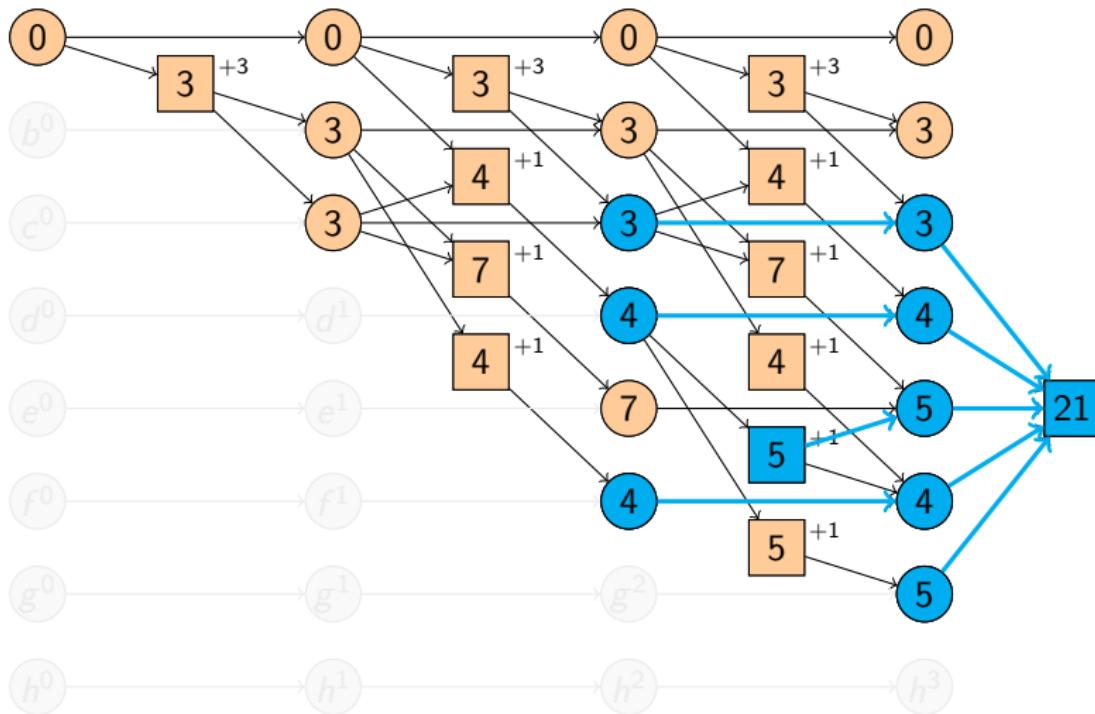
## Illustrative Example: $h^{\text{FF}}$



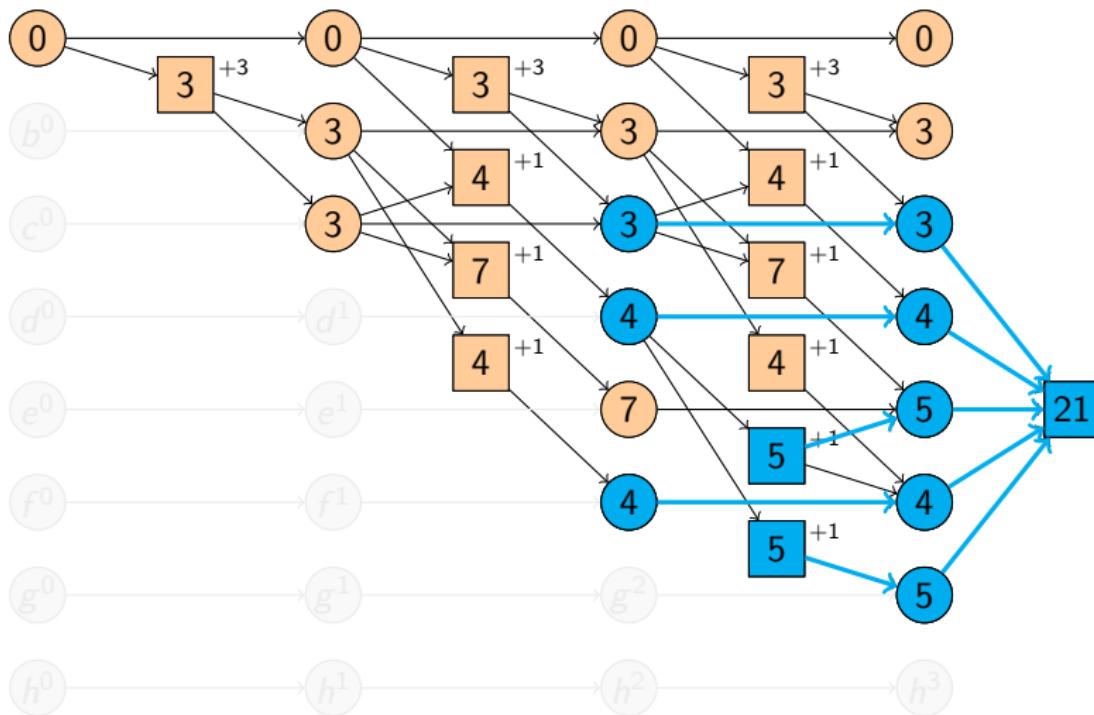
Illustrative Example:  $h^{\text{FF}}$ 

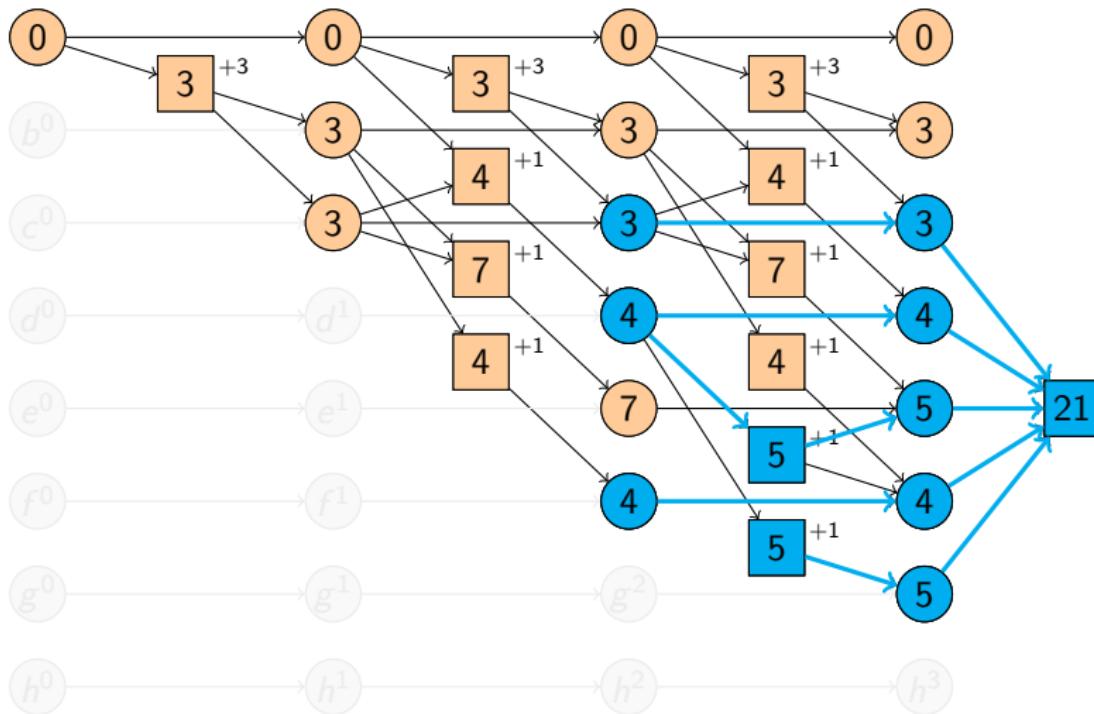
Illustrative Example:  $h^{\text{FF}}$ 

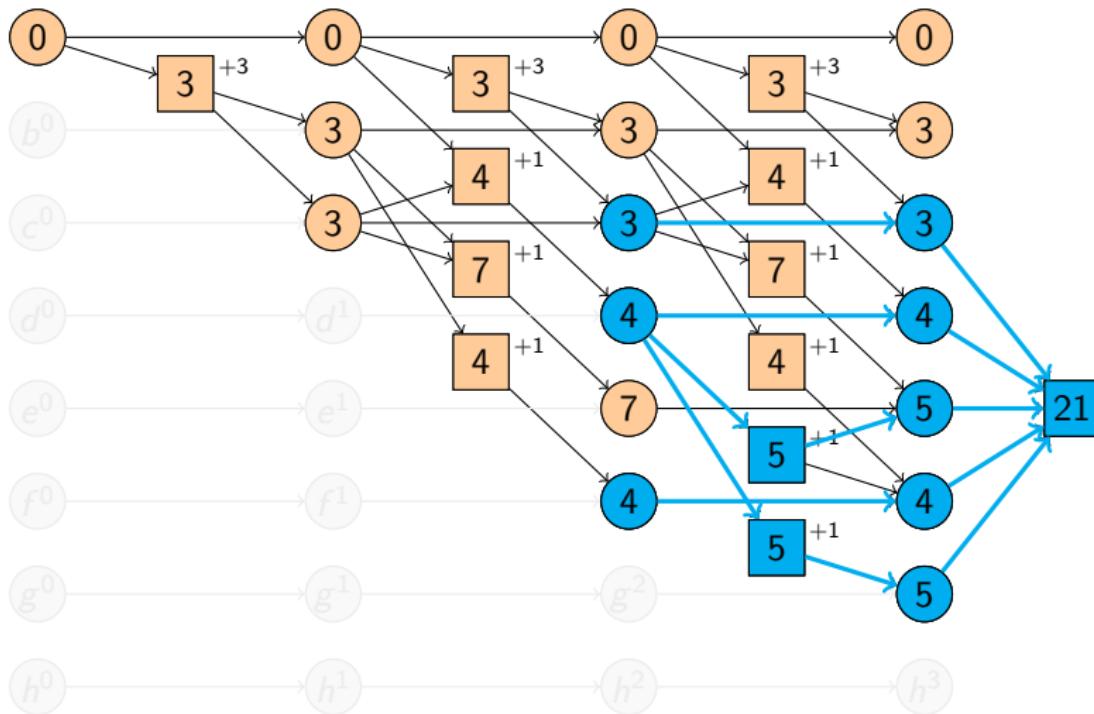
Illustrative Example:  $h^{\text{FF}}$ 

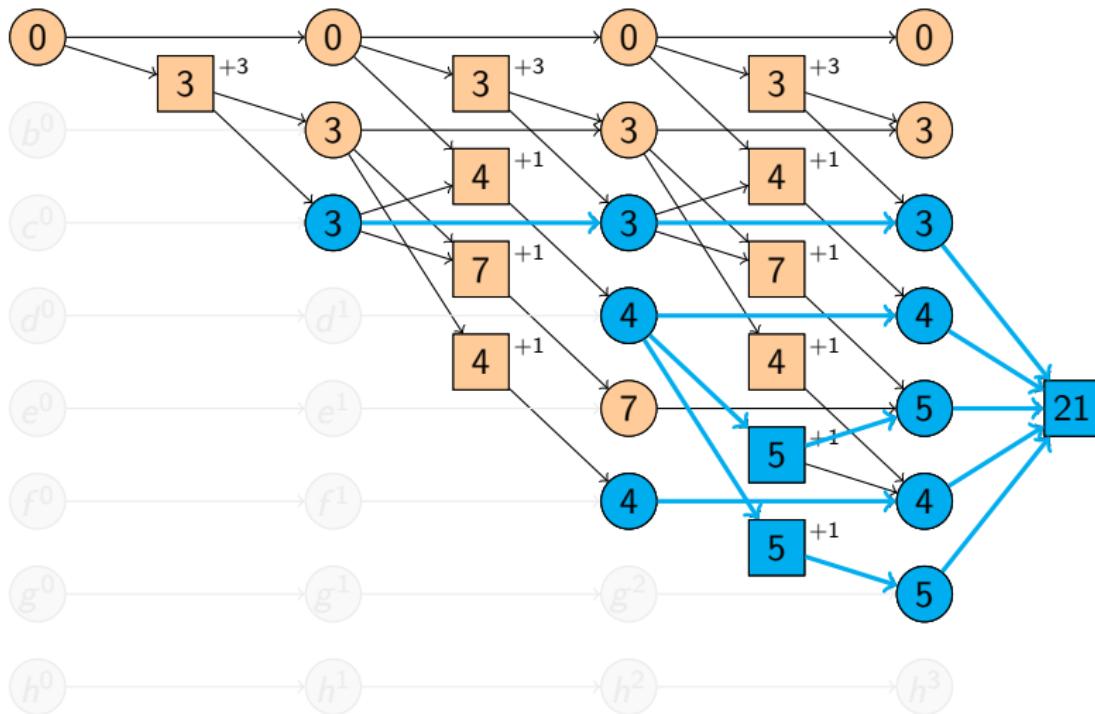
Illustrative Example:  $h^{\text{FF}}$ 

## Illustrative Example: $h^{\text{FF}}$

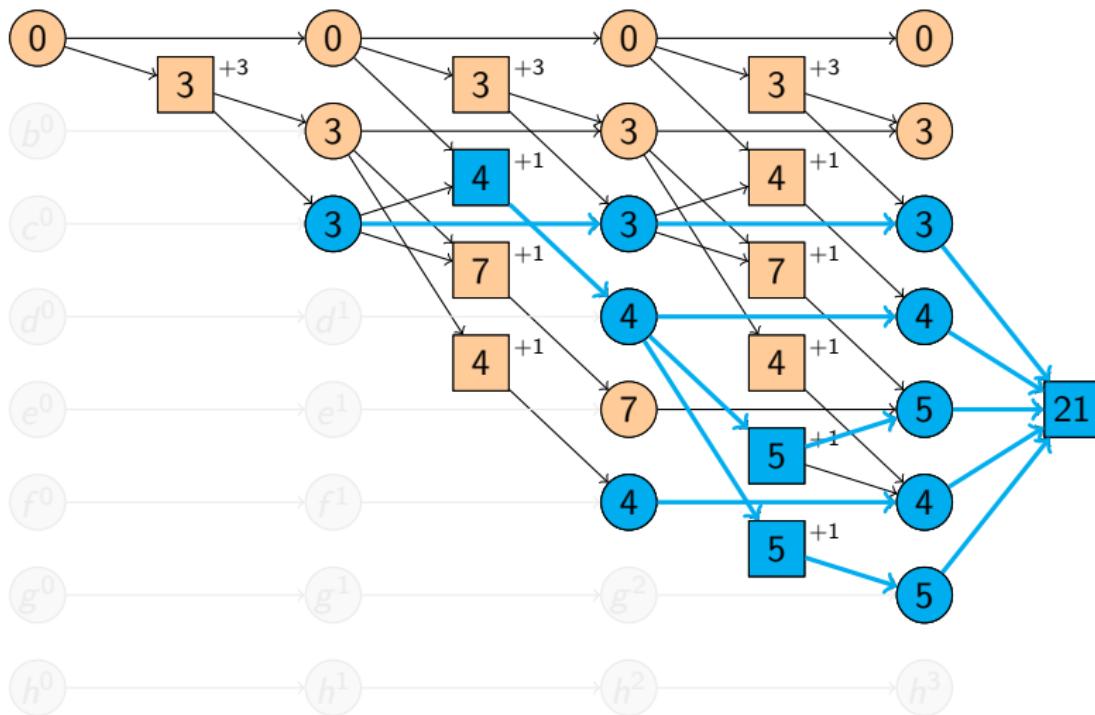


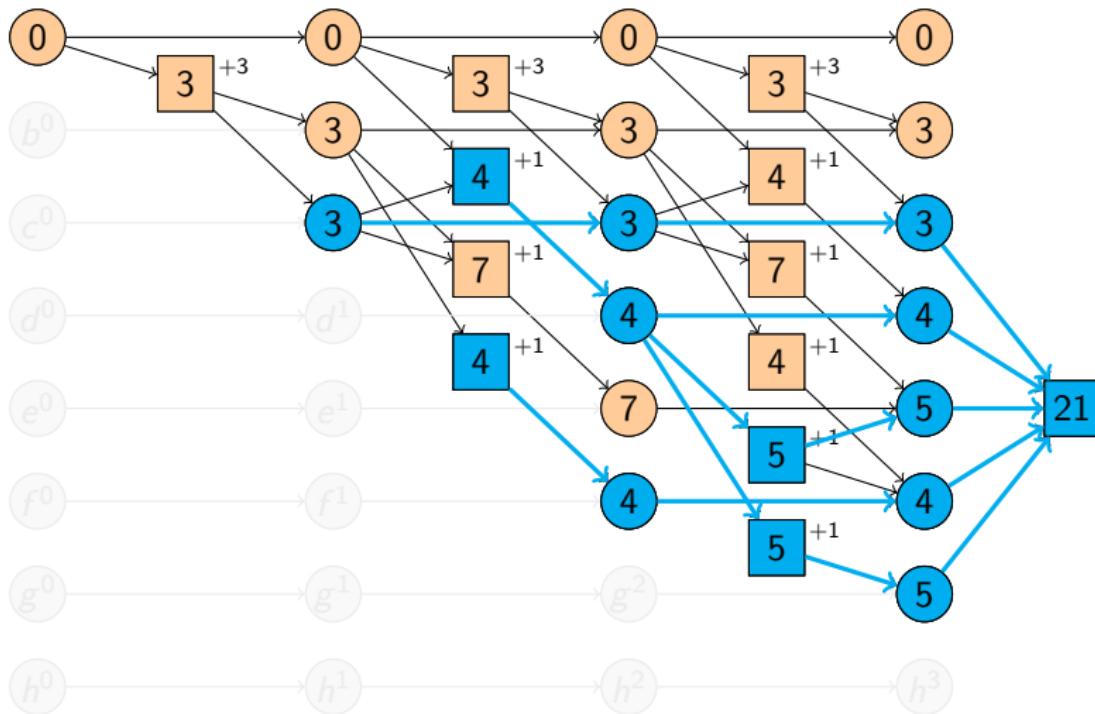
Illustrative Example:  $h^{\text{FF}}$ 

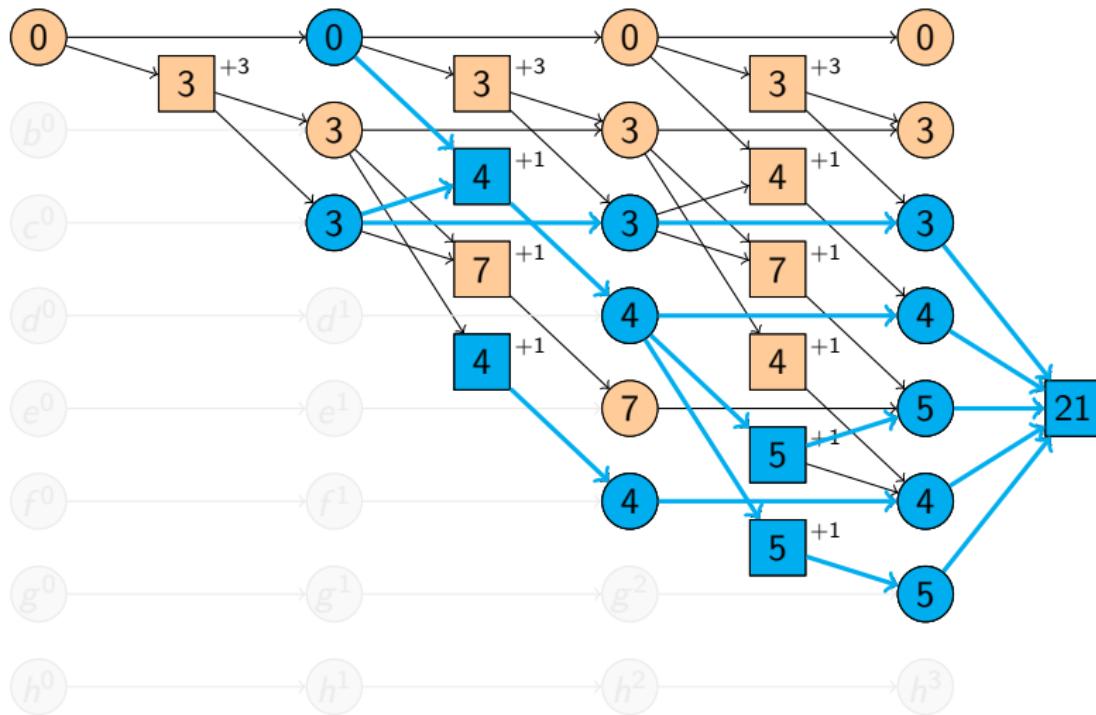
Illustrative Example:  $h^{\text{FF}}$ 

Illustrative Example:  $h^{\text{FF}}$ 

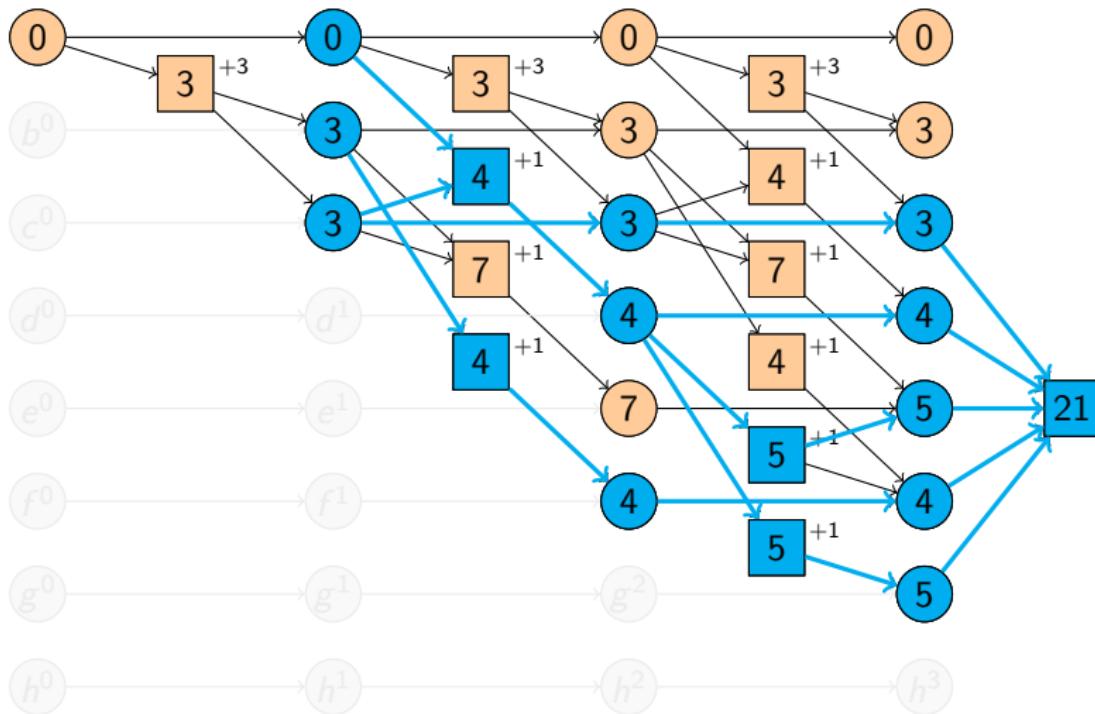
## Illustrative Example: $h^{\text{FF}}$



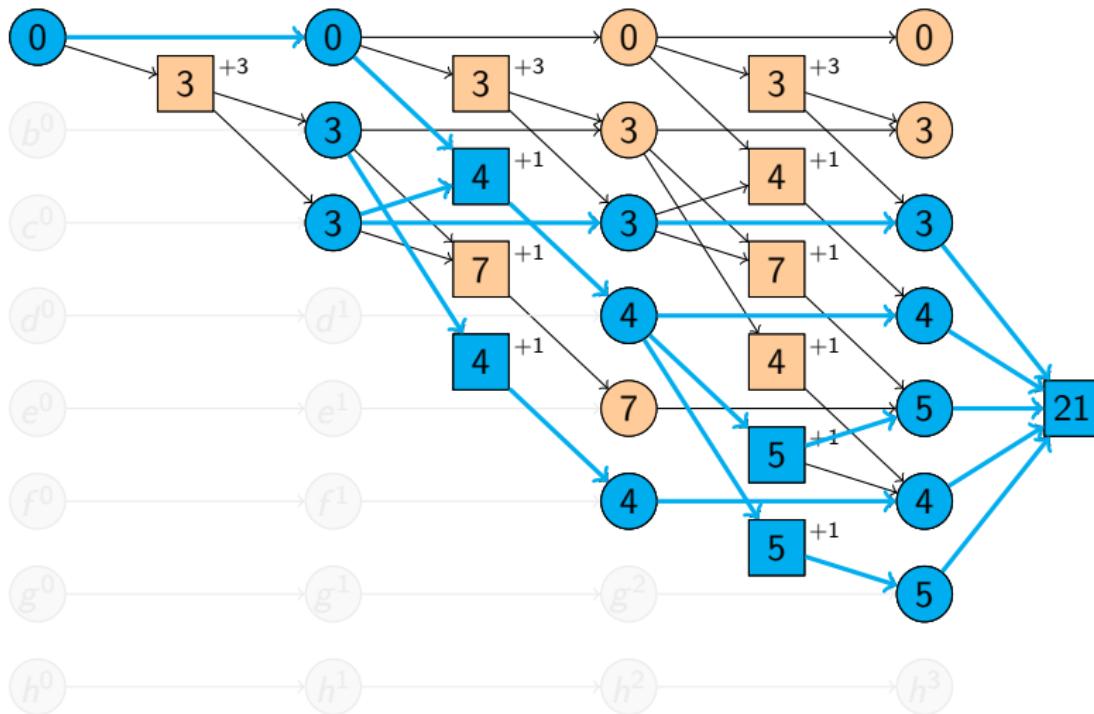
Illustrative Example:  $h^{\text{FF}}$ 

Illustrative Example:  $h^{\text{FF}}$ 

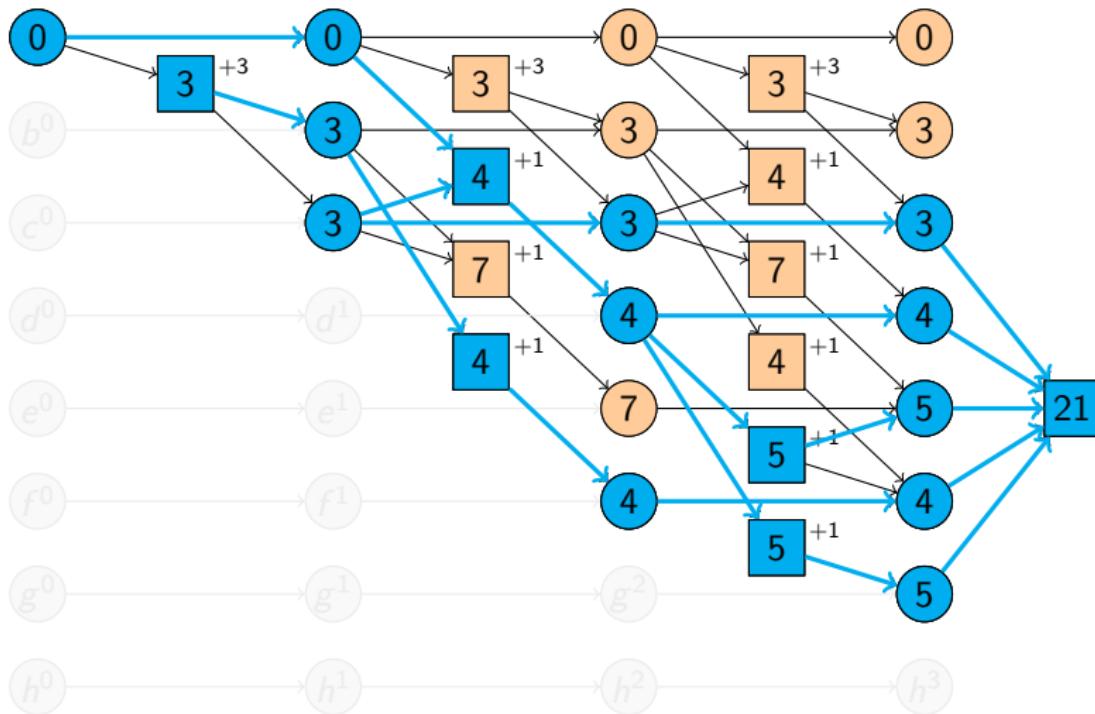
## Illustrative Example: $h^{\text{FF}}$

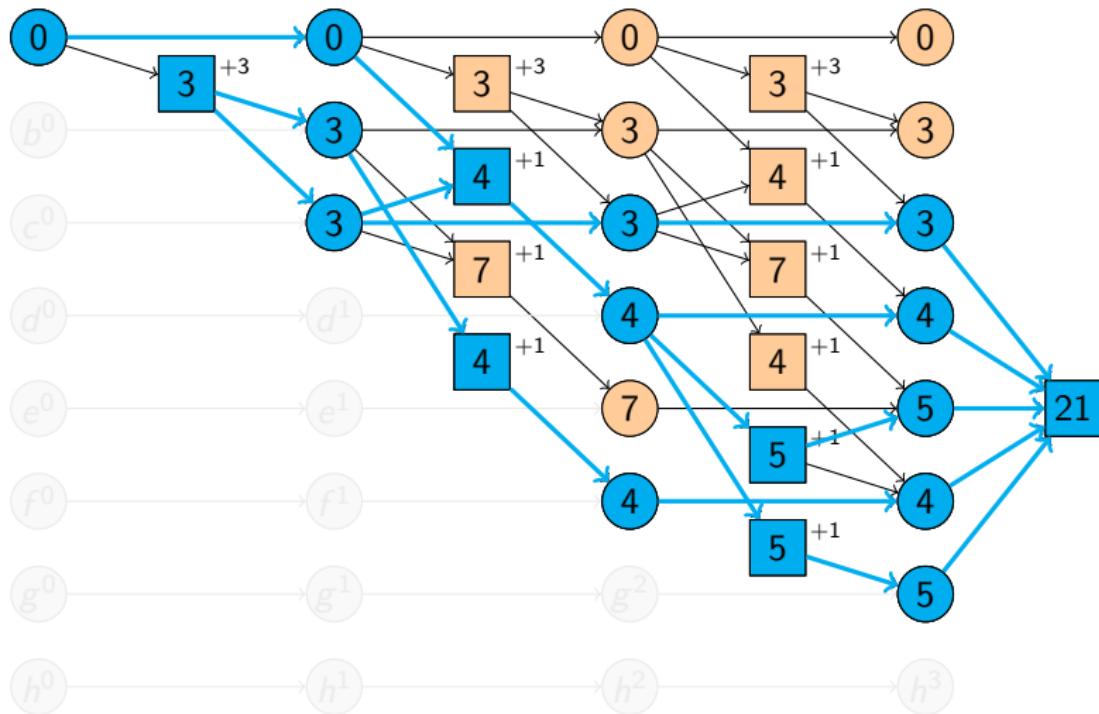


## Illustrative Example: $h^{\text{FF}}$

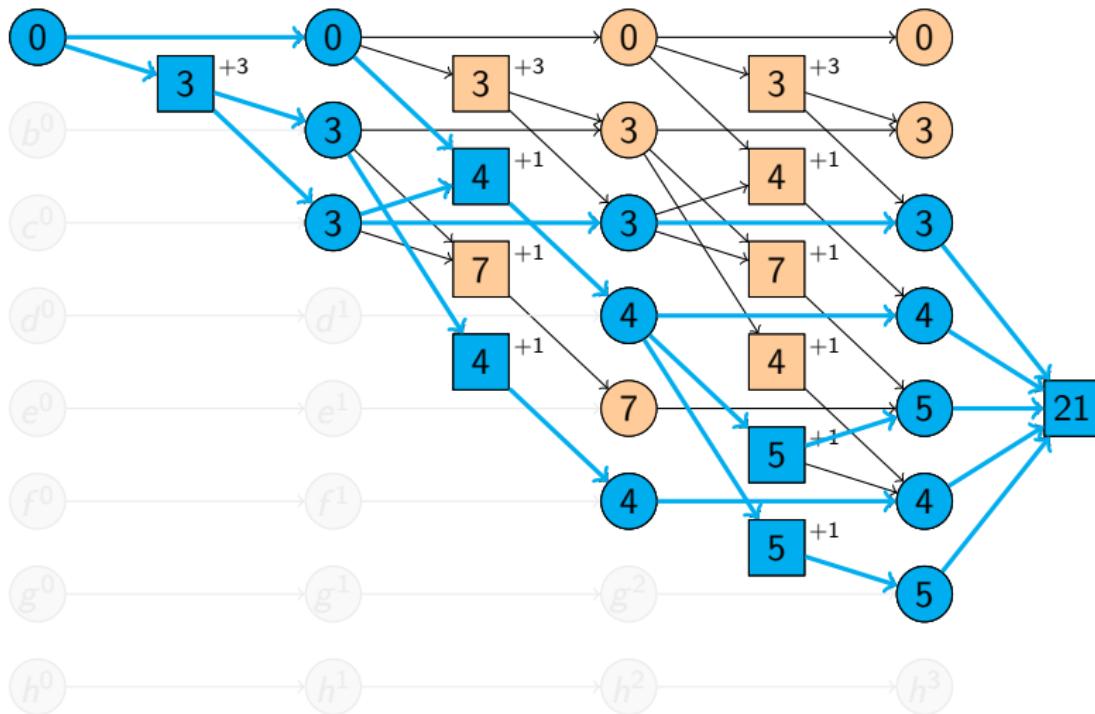


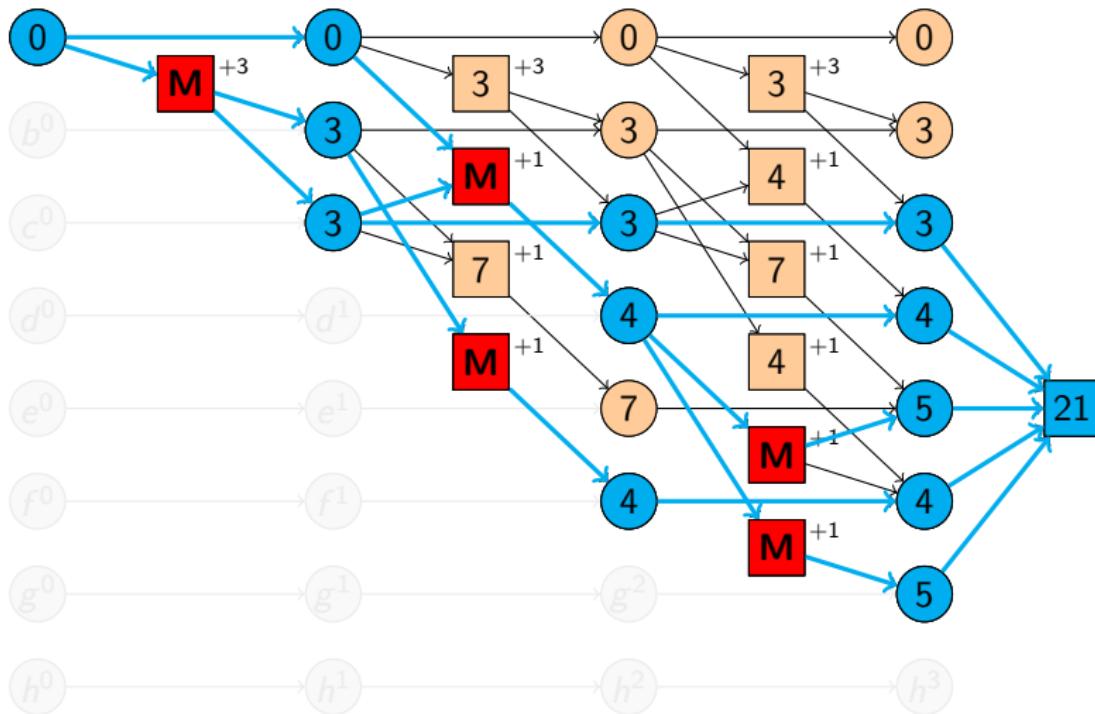
## Illustrative Example: $h^{\text{FF}}$



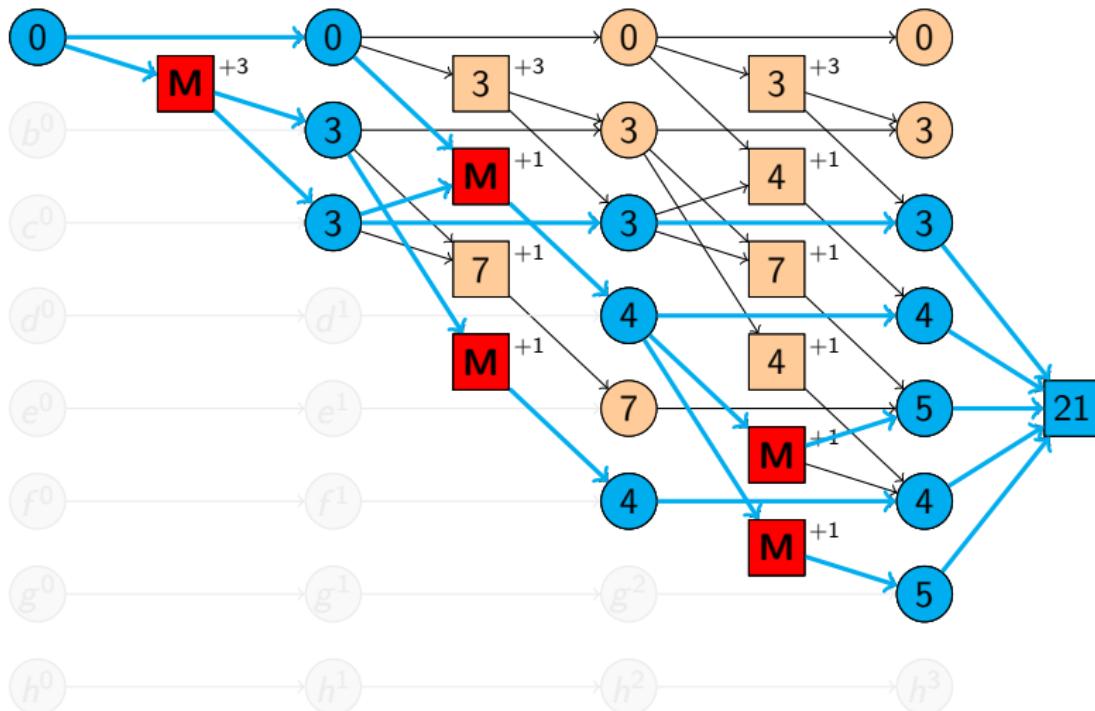
Illustrative Example:  $h^{\text{FF}}$ 

## Illustrative Example: $h^{\text{FF}}$



Illustrative Example:  $h^{\text{FF}}$ 

## Illustrative Example: $h^{\text{FF}}$



$$h^{\text{FF}}(\{a\}) = 3 + 1 + 1 + 1 + 1 = 7$$

## FF Heuristic: Remarks

- Like  $h^{\text{add}}$ ,  $h^{\text{FF}}$  is safe and goal-aware, but neither admissible nor consistent.
- approximation of  $h^+$  which is **always** at least as good as  $h^{\text{add}}$
- **usually** significantly better
- can be computed in **linear time** in the size of the description of the planning task

## FF Heuristic: Remarks

- Like  $h^{\text{add}}$ ,  $h^{\text{FF}}$  is safe and goal-aware, but neither admissible nor consistent.
- approximation of  $h^+$  which is **always** at least as good as  $h^{\text{add}}$
- **usually** significantly better
- can be computed in **linear time** in the size of the description of the planning task
- computation of heuristic value depends on **tie-breaking** of marking rules ( $h^{\text{FF}}$  not well-defined)
- one of the **most successful** planning heuristics

# Comparison of Relaxation Heuristics

## Relationships of Relaxation Heuristics

Let  $s$  be a state in the STRIPS planning task  $\langle V, I, G, A \rangle$ .

Then

- $h^{\max}(s) \leq h^+(s) \leq h^*(s)$
- $h^{\max}(s) \leq h^+(s) \leq h^{\text{FF}}(s) \leq h^{\text{add}}(s)$
- $h^*$  and  $h^{\text{FF}}$  are incomparable
- $h^*$  and  $h^{\text{add}}$  are incomparable

further remarks:

- For **non-admissible** heuristics, it is generally neither good nor bad to compute higher values than another heuristic.
- For relaxation heuristics, the objective is to approximate  $h^+$  as closely as possible.

Relaxed Planning Graphs  
oooooooo

Maximum and Additive Heuristics  
oooooooo

FF Heuristic  
ooooo

Summary  
●○

# Summary

# Summary

- Many delete relaxation heuristics can be viewed as computations on **relaxed planning graphs** (RPGs).
- examples:  $h^{\max}$ ,  $h^{\text{add}}$ ,  $h^{\text{FF}}$
- $h^{\max}$  and  $h^{\text{add}}$  propagate **numeric values** in the RPGs
  - difference:  $h^{\max}$  computes the **maximum** of predecessor costs for action and goal vertices;  $h^{\text{add}}$  computes the **sum**
- $h^{\text{FF}}$  **marks** vertices and sums the costs of marked action vertices.
- generally:  $h^{\max}(s) \leq h^+(s) \leq h^{\text{FF}}(s) \leq h^{\text{add}}(s)$