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Automated Planning: Overview

Chapter overview: automated planning

I 33. Introduction
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36.1 Relaxed Planning Graphs
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Relaxed Planning Graphs

I relaxed planning graphs: represent which variables in Π+

can be reached and how
I graphs with variable layers V i and action layers Ai

I variable layer V 0 contains the variable vertex v0 for all v ∈ I
I action layer Ai+1 contains the action vertex ai+1 for action a

if V i contains the vertex v i for all v ∈ pre(a)
I variable layer V i+1 contains the variable vertex v i+1

if previous variable layer contains v i ,
or previous action layer contains ai+1 with v ∈ add(a)

German: relaxierter Planungsgraph, Variablenknoten,
Aktionsknoten
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Relaxed Planning Graphs (Continued)

I goal vertices G i if v i ∈ V i for all v ∈ G

I graph can be constructed for arbitrary many layers
but stabilizes after a bounded number of layers
 V i+1 = V i and Ai+1 = Ai (Why?)

I directed edges:
I from v i to ai+1 if v ∈ pre(a) (precondition edges)
I from ai to v i if v ∈ add(a) (effect edges)
I from v i to G i if v ∈ G (goal edges)
I from v i to v i+1 (no-op edges)

German: Zielknoten, Vorbedingungskanten, Effektkanten,
Zielkanten, No-Op-Kanten
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Illustrative Example

We will write actions a with pre(a) = {p1, . . . , pk},
add(a) = {a1, . . . , al}, del(a) = ∅ and cost(a) = c
as p1, . . . , pk

c−→ a1, . . . , al

V = {a, b, c , d , e, f , g , h}
I = {a}
G = {c , d , e, f , g}
A = {a1, a2, a3, a4, a5, a6}
a1 = a 3−→ b, c

a2 = a, c 1−→ d

a3 = b, c 1−→ e

a4 = b 1−→ f

a5 = d 1−→ e, f

a6 = d 1−→ g
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Illustrative Example: Relaxed Planning Graph

a0

b0

c0

d0

e0

f 0

g0

h0

a1

a1

b1

c1

d1

e1

f 1

g1

h1

a1

a2

a3

a4

a2

b2

c2

d2

e2

f 2

g2

h2

a1

a2

a3

a4

a5

a6

a3

b3

c3

d3

e3

f 3

g3

h3

G

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 6, 2019 8 / 24



36. Automated Planning: Delete Relaxation Heuristics Relaxed Planning Graphs

Generic Relaxed Planning Graph Heuristic

Heuristic Values from Relaxed Planning Graph

function generic-rpg-heuristic(〈V , I ,G ,A〉, s):
Π+ := 〈V , s,G ,A+〉
for k ∈ {0, 1, 2, . . . }:

rpg := RPGk(Π+) [relaxed planning graph to layer k]
if rpg contains a goal node:

Annotate nodes of rpg.
if termination criterion is true:

return heuristic value from annotations
else if graph has stabilized:

return ∞

 general template for RPG heuristics

 to obtain concrete heuristic: instantiate highlighted elements
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Concrete Examples for Generic RPG Heuristic

Many planning heuristics fit this general template.

In this course:

I maximum heuristic hmax (Bonet & Geffner, 1999)

I additive heuristic hadd (Bonet, Loerincs & Geffner, 1997)

I Keyder & Geffner’s (2008) variant of the FF heuristic hFF

(Hoffmann & Nebel, 2001)

German: Maximum-Heuristik, additive Heuristik, FF-Heuristik

remark:

I The most efficient implementations of these heuristics
do not use explicit planning graphs,
but rather alternative (equivalent) definitions.
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36.2 Maximum and Additive
Heuristics
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Maximum and Additive Heuristics

I hmax and hadd are the simplest RPG heuristics.

I Vertex annotations are numerical values.
I The vertex values estimate the costs

I to make a given variable true
I to reach and apply a given action
I to reach the goal
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Maximum and Additive Heuristics: Filled-in Template

hmax and hadd

computation of annotations:

I costs of variable vertices:
0 in layer 0;
otherwise minimum of the costs of predecessor vertices

I costs of action and goal vertices:
maximum (hmax) or sum (hadd) of predecessor vertex costs;
for action vertices ai , also add cost(a)

termination criterion:

I stability: terminate if V i = V i−1 and costs of all vertices
in V i equal corresponding vertex costs in V i−1

heuristic value:

I value of goal vertex in the last layer
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Maximum and Additive Heuristics: Intuition

intuition:
I variable vertices:

I choose cheapest way of reaching the variable

I action/goal vertices:
I hmax is optimistic: assumption:

when reaching the most expensive precondition variable,
we can reach the other precondition variables in parallel
(hence maximization of costs)

I hadd is pessimistic: assumption:
all precondition variables must be reached completely
independently of each other (hence summation of costs)
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Illustrative Example: hmax
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Illustrative Example: hadd
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hmax and hadd: Remarks

comparison of hmax and hadd:

I both are safe and goal-aware

I hmax is admissible and consistent; hadd is neither.

 hadd not suited for optimal planning

I However, hadd is usually much more informative than hmax.
Greedy best-first search with hadd is a decent algorithm.

I Apart from not being admissible, hadd often vastly
overestimates the actual costs because
positive synergies between subgoals are not recognized.

 FF heuristic
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36.3 FF Heuristic
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FF Heuristic

The FF Heuristic

identical to hadd, but additional steps at the end:

I Mark goal vertex in the last graph layer.
I Apply the following marking rules until nothing more to do:

I marked action or goal vertex?
 mark all predecessors

I marked variable vertex v i in layer i ≥ 1?
 mark one predecessor with minimal hadd value
(tie-breaking: prefer variable vertices; otherwise arbitrary)

heuristic value:

I The actions corresponding to the marked action vertices
build a relaxed plan.

I The cost of this plan is the heuristic value.
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Illustrative Example: hFF
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FF Heuristic: Remarks

I Like hadd, hFF is safe and goal-aware,
but neither admissible nor consistent.

I approximation of h+ which is always at least as good as hadd

I usually significantly better

I can be computed in linear time
in the size of the description of the planning task

I computation of heuristic value depends on tie-breaking
of marking rules (hFF not well-defined)

I one of the most successful planning heuristics
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Comparison of Relaxation Heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task 〈V , I ,G ,A〉.

Then

I hmax(s) ≤ h+(s) ≤ h∗(s)

I hmax(s) ≤ h+(s) ≤ hFF(s) ≤ hadd(s)

I h∗ and hFF are incomparable

I h∗ and hadd are incomparable

further remarks:

I For non-admissible heuristics, it is generally neither good
nor bad to compute higher values than another heuristic.

I For relaxation heuristics, the objective is to approximate h+

as closely as possible.
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36.4 Summary
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Summary

I Many delete relaxation heuristics can be viewed
as computations on relaxed planning graphs (RPGs).

I examples: hmax, hadd, hFF

I hmax and hadd propagate numeric values in the RPGs
I difference: hmax computes the maximum of predecessor costs

for action and goal vertices; hadd computes the sum

I hFF marks vertices and sums the costs
of marked action vertices.

I generally: hmax(s) ≤ h+(s) ≤ hFF(s) ≤ hadd(s)
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