

Foundations of Artificial Intelligence

36. Automated Planning: Delete Relaxation Heuristics

Malte Helmert

University of Basel

May 6, 2019

Foundations of Artificial Intelligence

May 6, 2019 — 36. Automated Planning: Delete Relaxation Heuristics

36.1 Relaxed Planning Graphs

36.2 Maximum and Additive Heuristics

36.3 FF Heuristic

36.4 Summary

Automated Planning: Overview

Chapter overview: automated planning

- ▶ 33. Introduction
- ▶ 34. Planning Formalisms
- ▶ 35.–36. Planning Heuristics: Delete Relaxation
 - ▶ 35. Delete Relaxation
 - ▶ 36. Delete Relaxation Heuristics
- ▶ 37. Planning Heuristics: Abstraction
- ▶ 38.–39. Planning Heuristics: Landmarks

36.1 Relaxed Planning Graphs

Relaxed Planning Graphs

- **relaxed planning graphs**: represent **which** variables in Π^+ can be reached and **how**
- graphs with **variable layers** V^i and **action layers** A^i
 - variable layer V^0 contains the **variable vertex** v^0 for all $v \in I$
 - action layer A^{i+1} contains the **action vertex** a^{i+1} for action a if V^i contains the vertex v^i for all $v \in \text{pre}(a)$
 - variable layer V^{i+1} contains the variable vertex v^{i+1} if previous variable layer contains v^i , or previous action layer contains a^{i+1} with $v \in \text{add}(a)$

German: relaxierter Planungsgraph, Variablenknoten, Aktionsknoten

Illustrative Example

We will write actions a with $\text{pre}(a) = \{p_1, \dots, p_k\}$, $\text{add}(a) = \{a_1, \dots, a_l\}$, $\text{del}(a) = \emptyset$ and $\text{cost}(a) = c$ as $p_1, \dots, p_k \xrightarrow{c} a_1, \dots, a_l$

$$\begin{aligned} V &= \{a, b, c, d, e, f, g, h\} \\ I &= \{a\} \\ G &= \{c, d, e, f, g\} \\ A &= \{a_1, a_2, a_3, a_4, a_5, a_6\} \\ a_1 &= a \xrightarrow{3} b, c \\ a_2 &= a, c \xrightarrow{1} d \\ a_3 &= b, c \xrightarrow{1} e \\ a_4 &= b \xrightarrow{1} f \\ a_5 &= d \xrightarrow{1} e, f \\ a_6 &= d \xrightarrow{1} g \end{aligned}$$

Relaxed Planning Graphs (Continued)

- **goal vertices** G^i if $v^i \in V^i$ for all $v \in G$
- graph can be constructed for arbitrary many layers but stabilizes after a bounded number of layers $\rightsquigarrow V^{i+1} = V^i$ and $A^{i+1} = A^i$ (**Why?**)
- **directed edges**:
 - from v^i to a^{i+1} if $v \in \text{pre}(a)$ (**precondition edges**)
 - from a^i to v^i if $v \in \text{add}(a)$ (**effect edges**)
 - from v^i to G^i if $v \in G$ (**goal edges**)
 - from v^i to v^{i+1} (**no-op edges**)

German: Zielknoten, Vorbedingungskanten, Effektkanten, Zielkanten, No-Op-Kanten

Illustrative Example: Relaxed Planning Graph



Generic Relaxed Planning Graph Heuristic

Heuristic Values from Relaxed Planning Graph

```
function generic-rpg-heuristic(<V, I, G, A>, s):
     $\Pi^+ := \langle V, s, G, A^+ \rangle$ 
    for  $k \in \{0, 1, 2, \dots\}$ :
         $rpg := RPG_k(\Pi^+)$  [relaxed planning graph to layer  $k$ ]
        if  $rpg$  contains a goal node:
            Annotate nodes of  $rpg$ .
            if termination criterion is true:
                return heuristic value from annotations
        else if graph has stabilized:
            return  $\infty$ 
```

- ~~ general template for RPG heuristics
- ~~ to obtain concrete heuristic: instantiate highlighted elements

Concrete Examples for Generic RPG Heuristic

Many planning heuristics fit this general template.

In this course:

- ▶ maximum heuristic h^{\max} (Bonet & Geffner, 1999)
- ▶ additive heuristic h^{add} (Bonet, Loerincs & Geffner, 1997)
- ▶ Keyder & Geffner's (2008) variant of the FF heuristic h^{FF} (Hoffmann & Nebel, 2001)

German: Maximum-Heuristik, additive Heuristik, FF-Heuristik

remark:

- ▶ The most efficient implementations of these heuristics do not use explicit planning graphs, but rather alternative (equivalent) definitions.

36.2 Maximum and Additive Heuristics

Maximum and Additive Heuristics

- ▶ h^{\max} and h^{add} are the simplest RPG heuristics.
- ▶ Vertex annotations are numerical values.
- ▶ The vertex values estimate the costs
 - ▶ to make a given variable true
 - ▶ to reach and apply a given action
 - ▶ to reach the goal

Maximum and Additive Heuristics: Filled-in Template

h^{\max} and h^{add}

computation of annotations:

- ▶ costs of variable vertices:

0 in layer 0;
otherwise **minimum** of the costs of predecessor vertices

- ▶ costs of action and goal vertices:

maximum (h^{\max}) or **sum** (h^{add}) of predecessor vertex costs;
for action vertices a^i , also add $\text{cost}(a)$

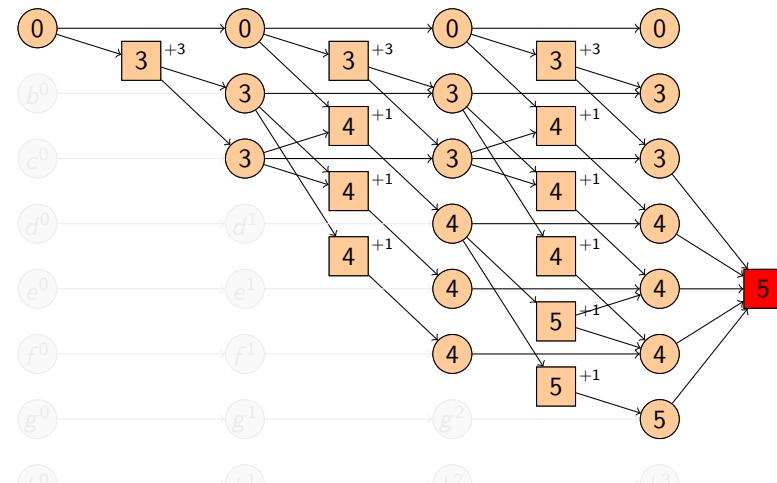
termination criterion:

- ▶ **stability**: terminate if $V^i = V^{i-1}$ and costs of all vertices in V^i equal corresponding vertex costs in V^{i-1}

heuristic value:

- ▶ value of goal vertex in the last layer

Illustrative Example: h^{\max}



Maximum and Additive Heuristics: Intuition

intuition:

- ▶ variable vertices:

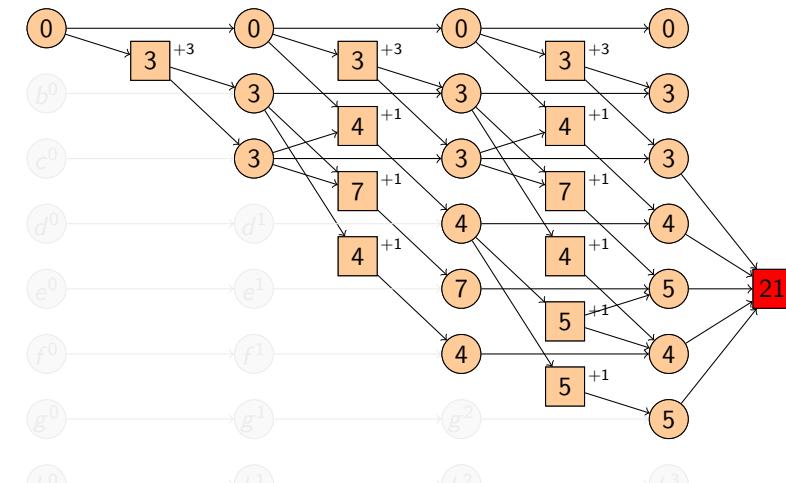
▶ choose **cheapest** way of reaching the variable

- ▶ action/goal vertices:

▶ h^{\max} is **optimistic**: assumption:
when reaching the **most expensive** precondition variable,
we can reach the other precondition variables in parallel
(hence maximization of costs)

▶ h^{add} is **pessimistic**: assumption:
all precondition variables must be reached completely
independently of each other (hence summation of costs)

Illustrative Example: h^{add}



FF Heuristic: Remarks

- ▶ Like h^{add} , h^{FF} is safe and goal-aware, but neither admissible nor consistent.
- ▶ approximation of h^+ which is **always** at least as good as h^{add}
- ▶ **usually** significantly better
- ▶ can be computed in **linear time** in the size of the description of the planning task
- ▶ computation of heuristic value depends on **tie-breaking** of marking rules (h^{FF} not well-defined)
- ▶ one of the **most successful** planning heuristics

36.4 Summary

Comparison of Relaxation Heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task $\langle V, I, G, A \rangle$.

Then

- ▶ $h^{\text{max}}(s) \leq h^+(s) \leq h^*(s)$
- ▶ $h^{\text{max}}(s) \leq h^+(s) \leq h^{\text{FF}}(s) \leq h^{\text{add}}(s)$
- ▶ h^* and h^{FF} are incomparable
- ▶ h^* and h^{add} are incomparable

further remarks:

- ▶ For **non-admissible** heuristics, it is generally neither good nor bad to compute higher values than another heuristic.
- ▶ For relaxation heuristics, the objective is to approximate h^+ as closely as possible.

Summary

- ▶ Many delete relaxation heuristics can be viewed as computations on **relaxed planning graphs** (RPGs).
- ▶ examples: h^{max} , h^{add} , h^{FF}
- ▶ h^{max} and h^{add} propagate **numeric values** in the RPGs
 - ▶ difference: h^{max} computes the **maximum** of predecessor costs for action and goal vertices; h^{add} computes the **sum**
- ▶ h^{FF} **marks** vertices and sums the costs of marked action vertices.
- ▶ generally: $h^{\text{max}}(s) \leq h^+(s) \leq h^{\text{FF}}(s) \leq h^{\text{add}}(s)$