Foundations of Artificial Intelligence
31. Propositional Logic: DPLL Algorithm

Malte Helmert

University of Basel

April 17, 2019

Propositional Logic: Overview

Chapter overview: propositional logic
@ 29. Basics
@ 30. Reasoning and Resolution
e 31. DPLL Algorithm
@ 32. Local Search and Outlook

Motivation

Motivation
0@000

Propositional Logic: Motivation

@ Propositional logic allows for the representation of knowledge
and for deriving conclusions based on this knowledge.
@ many practical applications can be directly encoded, e.g.
e constraint satisfaction problems of all kinds
e circuit design and verification
@ many problems contain logic as ingredient, e.g.

e automated planning
e general game playing
e description logic queries (semantic web)

Motivation
[e]e] Yolo)

Propositional Logic: Algorithmic Problems

main problems:
@ reasoning (© = ¢7?):
Does the formula ¢ logically follow from the formulas ©7
@ equivalence (¢ = ¥):
Are the formulas ¢ and v logically equivalent?
e satisfiability (SAT):
Is formula ¢ satisfiable? If yes, find a model.

German: Schlussfolgern, Aquivalenz, Erfiillbarkeit

Motivation
000@0

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:
propositional formula in conjunctive normal form (CNF)

usually represented as pair (V| A):
@ V set of propositional variables (propositions)
@ A set of clauses over V
(clause = set of literals v or —v with v € V)
find:
e satisfying interpretation (model)
@ or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

Motivation
0000e

Relevance of SAT

@ The name “SAT" is often used for the satisfiability problem for
general propositional formulas (instead of restriction to CNF).

@ General SAT can be reduced to CNF
(conversion in time O(n)).

@ All previously mentioned problems can be reduced to SAT
(conversion in time O(n)).

~» SAT algorithms important and intensively studied

this and next chapter: SAT algorithms

Systematic Search: DPLL

Systematic Search: DPLL

Systematic Search: DPLL
0®000000

SAT vs. CSP

SAT can be considered as constraint satisfaction problem:
@ CSP variables = propositions
e domains = {F, T}

@ constraints = clauses
However, we often have constraints that affect > 2 variables.

Due to this relationship, all ideas for CSPs are applicable to SAT:
@ search

@ inference
@ variable and value orders

Systematic Search: DPLL
00®00000

The DPLL Algorithm

The DPLL algorithm (Davis/Putnam/Logemann/Loveland)
corresponds to backtracking with inference for CSPs.
e recursive call DPLL(A, /)
for clause set A and partial interpretation /
@ result is consistent extension of /;
unsatisfiable if no such extension exists

e first call DPLL(A, D)
inference in DPLL:
@ simplify: after assigning value d to variable v,
simplify all clauses that contain v
~ forward checking (for constraints of potentially higher arity)
@ unit propagation: variables that occur in clauses without other

variables (unit clauses) are assigned immediately
~» minimum remaining values variable order

Systematic Search: DPLL DPLL on Horn Formulas
000e0000 0000

The DPLL Algorithm: Pseudo-Code

function DPLL(A, /):

if 0 e A: [empty clause exists ~ unsatisfiable]
return unsatisfiable
else if A = 0: [no clauses left ~~ interpretation / satisfies formula]
return /
else if there exists a unit clause {v} or {=v} in A: [unit propagation]
Let v be such a variable, d the truth value that satisfies the clause.
A" = simplify(A, v, d)
return DPLL(A', /U {v — d})
else: [splitting rule]
Select some variable v which occurs in A.
for each d € {F, T} in some order:
A" = simplify(A, v, d)
I := DPLL(A', I U {v — d})
if I’ # unsatisfiable
return /’
return unsatisfiable

Systematic Search: DPLL
0000®000

The DPLL Algorithm: simplify

function simplify(A, v, d)

Let ¢ be the literal for v that is satisfied by v — d.
A":={C|C e Asuchthat £ ¢ C}

A" ={C\{{}| CeA’}

return A"

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}

@ splitting rule:

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}

@ splitting rule:

2a. X —F
{yh{-v}

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{X Y EA{=X =YX, ~Y}H)
@ splitting rule:
2a. X —F
{Yh{=-v}

3a. unit propagation: Y — T

{O}

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{X Y EA{=X =YX, ~Y}H)
@ splitting rule:
2a. X —F 2b. X —T
{Yh{=-v} {=Y}}

3a. unit propagation: Y — T

{O}

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}
@ splitting rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. unit propagation: Y — T 3b. unit propagation: Y — F

{O} {

Systematic Search: DPLL
00000e®00

Example (1)

A={X,Y,=Z} {-X, =YL {Z}{X,~Y}}

@ unit propagation: Z — T
{{X7 Y}v {_'X7 _'Y}v {X7 _'Y}}
@ splitting rule:

2a. X —F 2b. X — T
{YrL{=-Y}} {=Y}}
3a. unit propagation: Y — T 3b. unit propagation: Y — F

{O} {

Systematic Search: DPLL
©000000e0

Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

Systematic Search: DPLL
©000000e0

Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T

Systematic Search: DPLL
©000000e0

Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
W, =X, =Y} X} {Y}}

Systematic Search: DPLL
©000000e0

Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
{Hw, X =Y} X} Y}
@ unit propagation: X — T

{W, =Y} A{Y}}

Systematic Search: DPLL
©000000e0

Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
{{Wv_‘Xv_‘Y}a{X}7{Y}}

@ unit propagation: X — T
{wW, =Y} A{Y}}

@ unit propagation: Y — T

{w}}

Systematic Search: DPLL
©000000e0

Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
{{Wv_‘Xv_‘Y}a{X}7{Y}}

@ unit propagation: X — T
{wW, =Y} A{Y}}

@ unit propagation: Y — T
{{w}}

@ unit propagation: W — T

{

Systematic Search: DPLL
©000000e0

Example (2)

A= {{Wv_‘Xv_'Ya _‘Z}v{X’_‘Z}7{Y7_'Z}’{Z}}

@ unit propagation: Z — T
{{Wv_‘Xv_‘Y}a{X}7{Y}}

@ unit propagation: X — T
{wW, =Y} A{Y}}

@ unit propagation: Y — T
{{w}}

@ unit propagation: W — T

{

Systematic Search: DPLL
©0000000e

Properties of DPLL

@ DPLL is sound and complete.
@ DPLL computes a model if a model exists.

e Some variables possibly remain unassigned in the solution /;
their values can be chosen arbitrarily.

@ time complexity in general exponential

~» important in practice: good variable order and
additional inference methods (in particular clause learning)

@ Best known SAT algorithms are based on DPLL.

DPLL on Horn Formulas

@000

DPLL on Horn Formulas

DPLL on Horn Formulas
0®00

Horn Formulas

important special case: Horn formulas

Definition (Horn formula)

A Horn clause is a clause with at most one positive literal,
i.e., of the form

X1 V---Vax,Vyor xgV:-V-x

(n=0is allowed.)

A Horn formula is a propositional formula
in conjunctive normal form that only consists of Horn clauses.

German: Hornformel

e foundation of logic programming (e.g., PROLOG)

@ critical in many kinds of practical reasoning problems

DPLL on Horn Formulas Summar
00®0 oo

DPLL on Horn Formulas

Proposition (DPLL on Horn formulas)

If the input formula ¢ is a Horn formula, then
the time complexity of DPLL is polynomial in the length of .

properties:
@ |If Ais a Horn formula, then so is simplify(A, v, d). (Why?)
~~ all formulas encountered during DPLL search
are Horn formulas if input is Horn formula
@ Every Horn formula without empty or unit clauses is
satisfiable:
o all such clauses consist of at least two literals

e Horn property: at least one of them is negative
e assigning F to all variables satisfies formula

DPLL on Horn Formulas
oooe

DPLL on Horn Formulas (Continued)

Proof (continued).

@ From 2. we can conclude:
o if splitting rule applied, then current formula satisfiable, and
e if a wrong decision is taken, then this will be recognized
without applying further splitting rules (i.e., only by applying
unit propagation and by deriving the empty clause).

@ Hence the generated search tree for n variables can only
contain at most n nodes where the splitting rule is applied
(i.e., where the tree branches).

@ It follows that the search tree is of polynomial size,
and hence the runtime is polynomial.

Summary

Summary
oce

Summary

@ satisfiability basic problem in propositional logic
to which other problems can be reduced

@ here: satisfiability for CNF formulas

@ Davis-Putnam-Logemann-Loveland procedure (DPLL):
systematic backtracking search with unit propagation
as inference method

@ DPLL successful in practice, in particular when combined
with other ideas such as clause learning

@ polynomial on Horn formulas
(= at most one positive literal per clause)

	Motivation
	

	Systematic Search: DPLL
	

	DPLL on Horn Formulas
	

	Summary
	

