

Foundations of Artificial Intelligence

31. Propositional Logic: DPLL Algorithm

Malte Helmert

University of Basel

April 17, 2019

Foundations of Artificial Intelligence

April 17, 2019 — 31. Propositional Logic: DPLL Algorithm

31.1 Motivation

31.2 Systematic Search: DPLL

31.3 DPLL on Horn Formulas

31.4 Summary

Propositional Logic: Overview

Chapter overview: propositional logic

- ▶ [29. Basics](#)
- ▶ [30. Reasoning and Resolution](#)
- ▶ [31. DPLL Algorithm](#)
- ▶ [32. Local Search and Outlook](#)

31.1 Motivation

Propositional Logic: Motivation

- ▶ Propositional logic allows for the **representation** of knowledge and for deriving **conclusions** based on this knowledge.
- ▶ many practical applications can be directly encoded, e.g.
 - ▶ constraint satisfaction problems of all kinds
 - ▶ circuit design and verification
- ▶ many problems contain logic as ingredient, e.g.
 - ▶ automated planning
 - ▶ general game playing
 - ▶ description logic queries (semantic web)

The Satisfiability Problem

The Satisfiability Problem (SAT)

given:

propositional formula in **conjunctive normal form** (CNF)

usually represented as pair (V, Δ) :

- ▶ V set of **propositional variables** (propositions)
- ▶ Δ set of **clauses** over V
(clause = set of **literals** v or $\neg v$ with $v \in V$)

find:

- ▶ satisfying interpretation (model)
- ▶ or proof that no model exists

SAT is a famous NP-complete problem (Cook 1971; Levin 1973).

Propositional Logic: Algorithmic Problems

main problems:

- ▶ **reasoning** ($\Theta \models \varphi$):
Does the formula φ logically follow from the formulas Θ ?
- ▶ **equivalence** ($\varphi \equiv \psi$):
Are the formulas φ and ψ logically equivalent?
- ▶ **satisfiability (SAT)**:
Is formula φ satisfiable? If yes, find a model.

German: Schlussfolgern, Äquivalenz, Erfüllbarkeit

Relevance of SAT

- ▶ The name “SAT” is often used for the satisfiability problem for **general** propositional formulas (instead of restriction to CNF).
- ▶ General SAT can be reduced to CNF (conversion in time $O(n)$).
- ▶ All previously mentioned problems can be reduced to SAT (conversion in time $O(n)$).
- ↝ SAT algorithms important and intensively studied

this and next chapter: SAT algorithms

31.2 Systematic Search: DPLL

The DPLL Algorithm

The **DPLL algorithm** (Davis/Putnam/Logemann/Loveland) corresponds to **backtracking with inference** for CSPs.

- ▶ recursive call $\text{DPLL}(\Delta, I)$
for clause set Δ and partial interpretation I
- ▶ result is consistent extension of I ;
unsatisfiable if no such extension exists
- ▶ first call $\text{DPLL}(\Delta, \emptyset)$

inference in DPLL:

- ▶ **simplify:** after assigning value d to variable v ,
simplify all clauses that contain v
 \rightsquigarrow **forward checking** (for constraints of potentially higher arity)
- ▶ **unit propagation:** variables that occur in clauses without other variables (**unit clauses**) are assigned immediately
 \rightsquigarrow **minimum remaining values** variable order

SAT vs. CSP

SAT can be considered as **constraint satisfaction problem**:

- ▶ **CSP variables** = propositions
- ▶ **domains** = $\{\mathbf{F}, \mathbf{T}\}$
- ▶ **constraints** = clauses

However, we often have constraints that affect > 2 variables.

Due to this relationship, all ideas for CSPs are applicable to SAT:

- ▶ search
- ▶ inference
- ▶ variable and value orders

The DPLL Algorithm: Pseudo-Code

```

function DPLL( $\Delta, I$ ):
  if  $\square \in \Delta$ : [empty clause exists  $\rightsquigarrow$  unsatisfiable]
    return unsatisfiable
  else if  $\Delta = \emptyset$ : [no clauses left  $\rightsquigarrow$  interpretation  $I$  satisfies formula]
    return  $I$ 
  else if there exists a unit clause  $\{v\}$  or  $\{\neg v\}$  in  $\Delta$ : [unit propagation]
    Let  $v$  be such a variable,  $d$  the truth value that satisfies the clause.
     $\Delta' := \text{simplify}(\Delta, v, d)$ 
    return DPLL( $\Delta', I \cup \{v \mapsto d\}$ )
  else: [splitting rule]
    Select some variable  $v$  which occurs in  $\Delta$ .
    for each  $d \in \{\mathbf{F}, \mathbf{T}\}$  in some order:
       $\Delta' := \text{simplify}(\Delta, v, d)$ 
       $I' := \text{DPLL}(\Delta', I \cup \{v \mapsto d\})$ 
      if  $I' \neq \text{unsatisfiable}$ 
        return  $I'$ 
    return unsatisfiable

```

The DPLL Algorithm: simplify

```
function simplify( $\Delta, v, d$ )
```

Let ℓ be the literal for v that is satisfied by $v \mapsto d$.

$\Delta' := \{C \mid C \in \Delta \text{ such that } \ell \notin C\}$

$\Delta'' := \{C \setminus \{\ell\} \mid C \in \Delta'\}$

return Δ''

Example (2)

$$\Delta = \{\{W, \neg X, \neg Y, \neg Z\}, \{X, \neg Z\}, \{Y, \neg Z\}, \{Z\}\}$$

- ① unit propagation: $Z \mapsto T$
 $\{\{W, \neg X, \neg Y\}, \{X\}, \{Y\}\}$
- ② unit propagation: $X \mapsto T$
 $\{\{W, \neg Y\}, \{Y\}\}$
- ③ unit propagation: $Y \mapsto T$
 $\{\{W\}\}$
- ④ unit propagation: $W \mapsto T$
 $\{\}$

Example (1)

$$\Delta = \{\{X, Y, \neg Z\}, \{\neg X, \neg Y\}, \{Z\}, \{X, \neg Y\}\}$$

- ① unit propagation: $Z \mapsto T$
 $\{\{X, Y\}, \{\neg X, \neg Y\}, \{X, \neg Y\}\}$
- ② splitting rule:
- 2a. $X \mapsto F$
 $\{\{Y\}, \{\neg Y\}\}$
- 2b. $X \mapsto T$
 $\{\{\neg Y\}\}$
- 3a. unit propagation: $Y \mapsto T$
 $\{\square\}$
- 3b. unit propagation: $Y \mapsto F$
 $\{\}$

- ▶ DPLL is sound and complete.
- ▶ DPLL computes a model if a model exists.
 - ▶ Some variables possibly remain unassigned in the solution I ; their values can be chosen arbitrarily.
- ▶ time complexity in general exponential
- ≈ important in practice: good variable order and additional inference methods (in particular clause learning)
- ▶ Best known SAT algorithms are based on DPLL.

31.3 DPLL on Horn Formulas

DPLL on Horn Formulas

Proposition (DPLL on Horn formulas)

If the input formula φ is a Horn formula, then the time complexity of DPLL is polynomial in the length of φ .

Proof.

properties:

- 1 If Δ is a Horn formula, then so is $\text{simplify}(\Delta, v, d)$. (Why?)
~ all formulas encountered during DPLL search are Horn formulas if input is Horn formula
- 2 Every Horn formula **without empty or unit clauses** is satisfiable:
 - ▶ all such clauses consist of at least two literals
 - ▶ Horn property: at least one of them is negative
 - ▶ assigning **F** to all variables satisfies formula

...

Horn Formulas

important special case: **Horn formulas**

Definition (Horn formula)

A **Horn clause** is a clause with at most one positive literal, i.e., of the form

$$\neg x_1 \vee \dots \vee \neg x_n \vee y \text{ or } \neg x_1 \vee \dots \vee \neg x_n$$

($n = 0$ is allowed.)

A **Horn formula** is a propositional formula in conjunctive normal form that only consists of Horn clauses.

German: Hornformel

- ▶ foundation of **logic programming** (e.g., PROLOG)
- ▶ critical in many kinds of practical reasoning problems

DPLL on Horn Formulas

Proposition (DPLL on Horn formulas)

If the input formula φ is a Horn formula, then the time complexity of DPLL is polynomial in the length of φ .

Proof.

properties:

- 1 If Δ is a Horn formula, then so is $\text{simplify}(\Delta, v, d)$. (Why?)
~ all formulas encountered during DPLL search are Horn formulas if input is Horn formula
- 2 Every Horn formula **without empty or unit clauses** is satisfiable:
 - ▶ all such clauses consist of at least two literals
 - ▶ Horn property: at least one of them is negative
 - ▶ assigning **F** to all variables satisfies formula

...

DPLL on Horn Formulas (Continued)

Proof (continued).

- 3 From 2. we can conclude:
 - ▶ if splitting rule applied, then current formula satisfiable, and
 - ▶ if a wrong decision is taken, then this will be recognized without applying further splitting rules (i.e., only by applying unit propagation and by deriving the empty clause).
- 4 Hence the generated search tree for n variables can only contain at most n nodes where the splitting rule is applied (i.e., where the tree branches).
- 5 It follows that the search tree is of polynomial size, and hence the runtime is polynomial.

□

31.4 Summary

Summary

- ▶ **satisfiability** basic problem in propositional logic to which other problems can be reduced
- ▶ here: satisfiability for **CNF formulas**
- ▶ **Davis-Putnam-Logemann-Loveland** procedure (DPLL): systematic backtracking search with **unit propagation** as inference method
- ▶ DPLL successful in practice, in particular when combined with other ideas such as **clause learning**
- ▶ **polynomial** on **Horn formulas**
(= at most one positive literal per clause)