Foundations of Artificial Intelligence

25. Constraint Satisfaction Problems: Arc Consistency

Malte Helmert

University of Basel

April 8, 2019



Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems:

e 22.-23.
® 24.-26.

o 24.
o 25.
e 206.

e 27.-28.

Introduction

Basic Algorithms
Backtracking

Arc Consistency
Path Consistency

Problem Structure



Inference



Inference
©0®0000

Inference

Derive additional constraints (here: unary or binary)
that are implied by the given constraints,
i.e., that are satisfied in all solutions.

example: constraint network with variables vq, vo, v3
with domain {1,2,3} and constraints vi < v» and v» < v3.
it follows:
@ v cannot be equal to 3
(new unary constraint = tighter domain of vy)
o Ry, ={(1,2),(1,3),(2,3)} can be tightened to {(1,2)}
(tighter binary constraint)
o vi<wv3
(“new" binary constraint = trivial constraint tightened)



Inference
©00®000

Trade-Off Search vs. Inference

Inference formally

For a given constraint network C, replace C
with an equivalent, but tighter constraint network.

Trade-off:
@ the more complex the inference, and
@ the more often inference is applied,
@ the smaller the resulting state space, but

@ the higher the complexity per search node.



Inference
00000

When to Apply Inference?

different possibilities to apply inference:
@ once as preprocessing before search

@ combined with search: before recursive calls
during backtracking procedure

o already assigned variable v — d corresponds to dom(v) = {d}
~~ more inferences possible
e during backtracking, derived constraints have to be retracted
because they were based on the given assignment
~ powerful, but possibly expensive



Inference
©0000®0

Backtracking with Inference

function BacktrackingWithInference(C, «):

if « is inconsistent with C:
return inconsistent

if o is a total assignment:
return o
C' = (V,dom’,(R.,)) := copy of C
apply inference to C’
if dom’(v) # 0 for all variables v:
select some variable v for which « is not defined

for each d € copy of dom’(v) in some order:
o =aU{v—d}
dom’(v) := {d}
o' := BacktrackingWithInference(C’, o)
if o/’ # inconsistent:
return o
return inconsistent




Inference
©0000®0

Backtracking with Inference

function BacktrackingWithInference(C, «):

if « is inconsistent with C:
return inconsistent
if o is a total assignment:
return o
C' :=(V,dom’,(R!,)) := copy of C
apply inference to C’
if dom’(v) # () for all variables v:
select some variable v for which « is not defined
for each d € copy of dom’(v) in some order:
o =aU{v—d}
dom’(v) := {d}
o' := BacktrackingWithInference(C', o)
if o/’ # inconsistent:
return o
return inconsistent




Inference
00000e

Backtracking with Inference: Discussion

@ Inference is a placeholder:
different inference methods can be applied.

@ Inference methods can recognize unsolvability (given «)
and indicate this by clearing the domain of a variable.

o Efficient implementations of inference are often incremental:
the previously assigned variable/value pair v — d is taken
into account to speed up the inference computation.




Forward Checking



Forward Checking
oeo

Forward Checking

We start with a simple inference method:

Forward Checking

Let o be a partial assignment.

Inference: For all unassigned variables v in a,

remove all values from the domain of v that are in conflict
with already assigned variable/value pairs in «.

~ definition of conflict as in the previous chapter

Incremental computation:

@ When adding v — d to the assignment,
delete all pairs that conflict with v +— d.



Forward Checking
ooe

Forward Checking: Discussion

properties of forward checking:
@ correct inference method (retains equivalence)

e affects domains (= unary constraints),
but not binary constraints

@ consistency check at the beginning of the backtracking
procedure no longer needed (\Why?)

@ cheap, but often still useful inference method

~ apply at least forward checking in the backtracking procedure

In the following, we will consider more powerful inference methods.



Arc Consistency

900000000000

Arc Consistency



Arc Consistency
0®0000000000

Arc Consistency: Definition

Definition (Arc Consistent)
Let C = (V,dom, (Ry,)) be a constraint network.

@ The variable v € V is arc consistent

with respect to another variable v/ € V,

if for every value d € dom(v)

there exists a value d’ € dom(v') with (d,d’) € R,,.
@ The constraint network C is arc consistent,

if every variable v € V is arc consistent

with respect to every other variable v/ € V.

German: kantenkonsistent

remarks:

@ definition for variable pair is not symmetrical
@ v always arc consistent with respect to v/
if the constraint between v and V' is trivial



Arc Consistency
00®000000000

Arc Consistency: Example

Consider a constraint network with variables v; and v»,
domains dom(v;) = dom(v2) = {1,2,3}
and the constraint expressed by v; < v».

Vi V2

Arc consistency of v; with respect to v»
and of v» with respect to v; are violated.



Arc Consistency
000®00000000

Enforcing Arc Consistency

e Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v/,
is a correct inference method. (Why?)

e more powerful than forward checking (Why?)



Arc Consistency
000®00000000

Enforcing Arc Consistency

e Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v/,
is a correct inference method. (Why?)

e more powerful than forward checking (Why?)

~ Forward checking is a special case:
enforcing arc consistency of all variables
with respect to the just assigned variable
corresponds to forward checking.

We will next consider algorithms that enforce arc consistency.



Arc Consistency
0000®0000000

Processing Variable Pairs: revise

function revise(C, v, v'):
(V,dom, (Ry)) :=C
for each d € dom(v):
if there is no d’ € dom(v') with (d,d") € R,
remove d from dom(v)

input: constraint network C and two variables v, v/ of C

effect: v arc consistent with respect to v'.
All violating values in dom(v) are removed.

time complexity: O(k?), where k is maximal domain size



Arc Consistency
00000e000000

Example: revise




Arc Consistency
00000e000000

Example: revise




Arc Consistency
00000e000000

Example: revise




Arc Consistency
00000e000000

Example: revise




Arc Consistency
00000e000000

Example: revise




Arc Consistency
000000e00000

Enforcing Arc Consistency: AC-1

function AC-1(C):
(V,dom, (Ry)) :==C
repeat
for each nontrivial constraint R, :
revise(C, u, v)
revise(C, v, u)
until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: ?



Arc Consistency
000000e00000

Enforcing Arc Consistency: AC-1

function AC-1(C):
(V,dom, (Ry)) :==C
repeat
for each nontrivial constraint R, :
revise(C, u, v)
revise(C, v, u)
until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: O(n- e - k3), with n variables,
e nontrivial constraints and maximal domain size k



Arc Consistency
0000000e0000

AC-1: Discussion

@ AC-1 does the job, but is rather inefficient.

@ Drawback: Variable pairs are often checked again and again
although their domains have remained unchanged.

@ These (redundant) checks can be saved.

~~ more efficient algorithm: AC-3



Arc Consistency

000000008000

Enforcing Arc Consistency: AC-3

idea: store potentially inconsistent variable pairs in a queue

function AC-3(C):

(V,dom, (Ru)) :=C
queue := )
for each nontrivial constraint R, :
insert (u, v) into queue
insert (v, u) into queue
while queue # (:
remove an arbitrary element (u, v) from queue
revise(C, u, v)
if dom(u) changed in the call to revise:
for each w € V' \ {u, v} where R, is nontrivial:
insert (w, u) into queue




Arc Consistency
000000000800

AC-3: Discussion

@ queue can be an arbitrary data structure
that supports insert and remove operations
(the order of removal does not affect the result)
~ use data structure with fast insertion and removal, e.g., stack
@ AC-3 has the same effect as AC-1:
it enforces arc consistency

@ proof idea: invariant of the while loop:
If (u,v) ¢ queue, then u is arc consistent with respect to v



Arc Consistency
000000000080

AC-3: Time Complexity

Proposition (time complexity of AC-3)

Let C be a constraint network with e nontrivial constraints
and maximal domain size k.

The time complexity of AC-3 is O(e - k3).




Arc Consistency
00000000000e

AC-3: Time Complexity (Proof)

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)




Arc Consistency
00000000000e

AC-3: Time Complexity (Proof)

Proof.

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.




Arc Consistency
00000000000e

AC-3: Time Complexity (Proof)

Proof.

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.




Arc Consistency
00000000000e

AC-3: Time Complexity (Proof)

Proof.

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair (u, v) is inserted into the queue
at most k + 1 times ~» at most O(ek) insert operations in total.




Arc Consistency
00000000000e

AC-3: Time Complexity (Proof)

Proof.

Consider a pair (u, v) such that there exists a nontrivial constraint
Ruv or Ryy. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair (u, v) is inserted into the queue
at most k + 1 times ~» at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) - O(k?) = O(ek3). [

v




Summary



Summary: Inference

@ inference: derivation of additional constraints
that are implied by the known constraints

~> tighter equivalent constraint network
@ trade-off search vs. inference
@ inference as preprocessing or integrated into backtracking

Summary
oeo



Summary
ooe

Summary: Forward Checking, Arc Consistency

@ cheap and easy inference: forward checking
e remove values that conflict with already assigned values
@ more expensive and more powerful: arc consistency
o iteratively remove values without a suitable “partner value”
for another variable until fixed-point reached
o efficient implementation of AC-3: O(ek3)
with e: #nontrivial constraints, k: size of domain



	Inference
	

	Forward Checking
	

	Arc Consistency
	

	Summary
	


