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Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization

I 20. Introduction and Hill-Climbing

I 21. Advanced Techniques
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21.1 Dealing with Local Optima
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Example: Local Minimum in the 8 Queens Problem

local minimum:

I candidate has 1 conflict

I all neighbors have at least 2
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Weaknesses of Local Search Algorithms

difficult situations for hill climbing:

I local optima: all neighbors worse than current candidate

I plateaus: many neighbors equally good as current candidate;
none better

German: lokale Optima, Plateaus

consequence:

I algorithm gets stuck at current candidate
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Combating Local Optima

possible remedies to combat local optima:

I allow stagnation (steps without improvement)

I include random aspects in the search neighborhood

I (sometimes) make random steps

I breadth-first search to better candidate

I restarts (with new random initial candidate)
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Allowing Stagnation

allowing stagnation:

I do not terminate when no neighbor is an improvement

I limit number of steps to guarantee termination
I at end, return best visited candidate

I pure search problems: terminate as soon as solution found

Example 8 queens problem:

I with a bound of 100 steps solution found in 94% of the cases

I on average 21 steps until solution found

 works very well for this problem;
for more difficult problems often not good enough
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Random Aspects in the Search Neighborhood

a possible variation of hill climbing for 8 queens:
Randomly select a file; move queen in this file
to square with minimal number of conflicts (null move possible).
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 Good local search approaches often combine

 

randomness (exploration) with heuristic guidance (exploitation).

German: Exploration, Exploitation
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21.2 Outlook: Simulated Annealing
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Simulated Annealing

Simulated annealing is a local search algorithm that systematically
injects noise, beginning with high noise, then lowering it over time.

I walk with fixed number of steps N (variations possible)

I initially it is “hot”, and the walk is mostly random

I over time temperature drops (controlled by a schedule)

I as it gets colder, moves to worse neighbors become less likely

very successful in some applications, e.g., VLSI layout

German: simulierte Abkühlung, Rauschen
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Simulated Annealing: Pseudo-Code

Simulated Annealing (for Maximization Problems)

curr := a random candidate
best := none
for each t ∈ {1, . . . ,N}:

if is solution(curr) and (best is none or v(curr) > v(best)):
best := curr

T := schedule(t)
next := a random neighbor of curr
∆E := h(next)− h(curr)

if ∆E ≥ 0 or with probability e
∆E
T :

curr := next
return best
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21.3 Outlook: Genetic Algorithms
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Genetic Algorithms

Evolution often finds good solutions.

idea: simulate evolution by selection, crossover and mutation

idea:

of individuals

ingredients:

I encode each candidate as a string of symbols (genome)

I fitness function: evaluates strength of candidates (= heuristic)

I population of k (e.g. 10–1000) individuals (candidates)

German: Evolution, Selektion, Kreuzung, Mutation, Genom,
Fitnessfunktion, Population, Individuen
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Genetic Algorithm: Example

example 8 queens problem:

I genome: encode candidate as string of 8 numbers

I fitness: number of non-attacking queen pairs

I use population of 100 candidates
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Selection, Mutation and Crossover

many variants:
How to select?
How to perform crossover?
How to mutate?

select according to fitness function,
followed by pairing

determine crossover points,
then recombine

mutation: randomly modify
each string position with
a certain probability
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21.4 Summary
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Summary

I weakness of local search: local optima and plateaus

I remedy: balance exploration against exploitation
(e.g., with randomness and restarts)

I simulated annealing and genetic algorithms
are more complex search algorithms
using the typical ideas of local search
(randomization, keeping promising candidates)
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