Foundations of Artificial Intelligence
19. State-Space Search: Properties of A*, Part Il

Malte Helmert

University of Basel

March 27, 2019

State-Space Search: Overview

Chapter overview: state-space search

@ 5.—7. Foundations

e 8.—12. Basic Algorithms
e 13.-19

13.
14.
15.
16.
17.
18.
19.

Heuristic Algorithms

Heuristics

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A", Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part I

Introduction

Introduction
oeo

Optimality of A* without Reopening

We now study A" without reopening.

@ For A* without reopening, admissibility and consistency
together guarantee optimality.

@ We prove this on the following slides,
again beginning with a basic lemma.

o Either of the two properties on its own would not be sufficient
for optimality. (How would one prove this?)

Introduction onotonicity Lemma Optimality of A™ without Reopening i Complexity of A Summar
ooe 00 s

Reminder: A* without Reopening

reminder: A* without reopening

A* without Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oc:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oo:
n’ := make_node(n, a, s’)
open.insert(n")
return unsolvable

Monotonicity Lemma

Monotonicity Lemma
0®00

A™: Monotonicity Lemma (1)

Lemma (monotonicity of A* with consistent heuristics)
Consider A* with a consistent heuristic.
Then:

@ Ifn’ is a child node of n, then f(n') > f(n).

@ On all paths generated by A*, f values are non-decreasing.

© The sequence of f values of the nodes expanded by A*
is non-decreasing.

German: Monotonielemma

Monotonicity Lemma
fele] 1)

A*: Monotonicity Lemma (2)

Proof.

on 1.

Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

Monotonicity Lemma
fele] 1)

A*: Monotonicity Lemma (2)

Proof.

on 1.

Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')

Monotonicity Lemma
fele] 1)

A*: Monotonicity Lemma (2)

Proof.

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
@ by definition of g: g(n’) = g(n) + cost(a)

Monotonicity Lemma
fele] 1)

A*: Monotonicity Lemma (2)

Proof.

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
@ by definition of g: g(n’) = g(n) + cost(a)
@ by consistency of h: h(s) < cost(a) + h(s’)

Monotonicity Lemma
fele] 1)

A*: Monotonicity Lemma (2)

Proof.

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
@ by definition of g: g(n’) = g(n) + cost(a)
@ by consistency of h: h(s) < cost(a) + h(s’)
~ f(n) = g(n) + h(s) < g(n) + cost(a) + h(s')
=g(n'") + h(s") = £(n')

Monotonicity Lemma
fele] 1)

A*: Monotonicity Lemma (2)

Proof.

on 1.
Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

@ by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
@ by definition of g: g(n’) = g(n) + cost(a)
@ by consistency of h: h(s) < cost(a) + h(s’)
~ f(n) = g(n) + h(s) < g(n) + cost(a) + h(s')
=g(n'") + h(s") = £(n')

on 2.: follows directly from 1.

Monotonicity Lemma
oooe

A*: Monotonicity Lemma (3)

Proof (continued).
on 3:

@ Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

Monotonicity Lemma Optimality of A* without Reopening
oooe

*: Monotonicity Lemma (3)

Proof (continued).

on 3:
@ Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

@ to show: at the end of the iteration
the minimal f value in open is at least f,.

Monotonicity Lemma Optimality of A* without Reopening
oooe [e]e]

*: Monotonicity Lemma (3)

Proof (continued).

on 3:

@ Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

@ to show: at the end of the iteration
the minimal f value in open is at least f,.

@ We must consider the operations modifying open:
open.pop_min and open.insert.

Monotonicity Lemma Optimality of A* without Reopening
oooe

*: Monotonicity Lemma (3)

Proof (continued).

on 3:

@ Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

@ to show: at the end of the iteration
the minimal f value in open is at least f,.

@ We must consider the operations modifying open:
open.pop_min and open.insert.

@ open.pop_min can never decrease the minimal f value
in open (only potentially increase it).

Monotonicity Lemma Optimality of A* without Reopening
oooe [e]e]

*: Monotonicity Lemma (3)

Proof (continued).

on 3:

Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with 7(n) = #,.

to show: at the end of the iteration
the minimal f value in open is at least f,.

We must consider the operations modifying open:
open.pop_min and open.insert.

open.pop_min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n’ added with open.insert are children of n

and hence satisfy f(n') > f(n) = f,, according to part 1.

Summar

Optimality of A* without Reopening

L Je]

Optimality of A* without Reopening

icity Lemma Optimality of A* without Reopening i g exity of A Summar
oe

Optimality of A* without Reopening

Theorem (optimality of A* without reopening)

A* without reopening is optimal when using
an admissible and consistent heuristic.

| A\

Proof.

From the monotonicity lemma, the sequence of f values
of nodes removed from the open list is non-decreasing.

~ |f multiple nodes with the same state s are removed
from the open list, then their g values are non-decreasing.

~ If we allowed reopening, it would never happen.

~+ With consistent heuristics, A* without reopening
behaves the same way as A* with reopening.

The result follows because A* with reopening
and admissible heuristics is optimal. Ol

Time Complexity of A*

Time Complexity of A

Time Complexity of A*
0®0000

Time Complexity of A* (1)

What is the time complexity of A*?

@ depends strongly on the quality of the heuristic
@ an extreme case: h = 0 for all states
~ A identical to uniform cost search
@ another extreme case: h = h* and cost(a) > 0
for all actions a

~+ A* only expands nodes along an optimal solution

~» O(£*) expanded nodes, O(£*b) generated nodes, where
o /*: length of the found optimal solution
@ b: branching factor

Time Complexity of A*
00®000

Time Complexity of A* (2)

more precise analysis:
@ dependency of the runtime of A* on heuristic error

example:
@ unit cost problems with
@ constant branching factor and
@ constant absolute error: |h*(s) — h(s)| < c foralls€ S

time complexity:
o if state space is a tree: time complexity of A* grows
linearly in solution length (Pohl 1969; Gaschnig 1977)

@ general search spaces: runtime of A* grows
exponentially in solution length (Helmert & Roger 2008)

Time Complexity of A*
000®00

Overhead of Reopening

How does reopening affect runtime?

@ For most practical state spaces and inconsistent admissible
heuristics, the number of reopened nodes is negligible.

@ exceptions exist:
Martelli (1977) constructed state spaces with n states
where exponentially many (in n) node reopenings occur in A*.
(~ exponentially worse than uniform cost search)

ithout Reopening Time Complexity of A* Summar
00000 oo

Optimality of A™ v

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 1 11 ' 9 10 | 11 | 12
15 4 10 8 13 | 14 | 15 .

hi: number of tiles in wrong cell (misplaced tiles)
ha: sum of distances of tiles to their goal cell (Manhattan distance)

Time Complexity of A*
[elelelelel)

Practical Evaluation of A* (2)

@ experiments with random initial states,
generated by random walk from goal state

@ entries show median of number of generated nodes
for 101 random walks of the same length N

generated nodes

N BFS-Graph | A* with hy | A* with h
10 63 15 15
20 1,052 28 27
30 7,546 77 42
40 72,768 227 64
50 359,298 422 83
60 || > 1,000,000 7,100 307
70 || > 1,000,000 12,769 377
80 || > 1,000,000 62,583 849
90 (| > 1,000,000 162,035 1,522
100 || > 1,000,000 690,497 4,964

Summary

Summary
oce

Summary

@ A* without reopening using an admissible and consistent
heuristic is optimal

@ key property monotonicity lemma (with consistent heuristics):

o f values never decrease along paths considered by A*
e sequence of f values of expanded nodes is non-decreasing
@ time complexity depends on heuristic and shape of state space

e precise details complex and depend on many aspects

@ reopening increases runtime exponentially in degenerate cases,
but usually negligible overhead

e small improvements in heuristic values often
lead to exponential improvements in runtime

	Introduction
	Monotonicity Lemma
	Optimality of A* without Reopening
	Time Complexity of A*
	Summary

