

Foundations of Artificial Intelligence

19. State-Space Search: Properties of A*, Part II

Malte Helmert

University of Basel

March 27, 2019

State-Space Search: Overview

Chapter overview: state-space search

- 5.–7. Foundations
- 8.–12. Basic Algorithms
- 13.–19. Heuristic Algorithms
 - 13. Heuristics
 - 14. Analysis of Heuristics
 - 15. Best-first Graph Search
 - 16. Greedy Best-first Search, A*, Weighted A*
 - 17. IDA*
 - 18. Properties of A*, Part I
 - 19. Properties of A*, Part II

Introduction

Optimality of A* without Reopening

We now study A* without reopening.

- For A* without reopening, admissibility and consistency together guarantee optimality.
- We prove this on the following slides, again beginning with a basic lemma.
- Either of the two properties on its own would **not** be sufficient for optimality. (How would one prove this?)

Reminder: A* without Reopening

reminder: A* without reopening

A* without Reopening

```
open := new MinHeap ordered by ⟨f, h⟩
if h(init()) < ∞:
    open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
    n := open.pop_min()
    if n.state ∉ closed:
        closed.insert(n)
        if is_goal(n.state):
            return extract_path(n)
        for each ⟨a, s'⟩ ∈ succ(n.state):
            if h(s') < ∞:
                n' := make_node(n, a, s')
                open.insert(n')
return unsolvable
```

Monotonicity Lemma

A*: Monotonicity Lemma (1)

Lemma (monotonicity of A* with consistent heuristics)

Consider A* with a *consistent* heuristic.

Then:

- ① If n' is a child node of n , then $f(n') \geq f(n)$.
- ② On all paths generated by A*, f values are non-decreasing.
- ③ The sequence of f values of the nodes expanded by A* is non-decreasing.

German: Monotonielemma

A*: Monotonicity Lemma (2)

Proof.

on 1.:

Let n' be a child node of n via action a .

Let $s = n.\text{state}$, $s' = n'.\text{state}$.

A*: Monotonicity Lemma (2)

Proof.

on 1.:

Let n' be a child node of n via action a .

Let $s = n.\text{state}$, $s' = n'.\text{state}$.

- by definition of f : $f(n) = g(n) + h(s)$, $f(n') = g(n') + h(s')$

A*: Monotonicity Lemma (2)

Proof.

on 1.:

Let n' be a child node of n via action a .

Let $s = n.\text{state}$, $s' = n'.\text{state}$.

- by definition of f : $f(n) = g(n) + h(s)$, $f(n') = g(n') + h(s')$
- by definition of g : $g(n') = g(n) + \text{cost}(a)$

A*: Monotonicity Lemma (2)

Proof.

on 1.:

Let n' be a child node of n via action a .

Let $s = n.\text{state}$, $s' = n'.\text{state}$.

- by definition of f : $f(n) = g(n) + h(s)$, $f(n') = g(n') + h(s')$
- by definition of g : $g(n') = g(n) + \text{cost}(a)$
- by consistency of h : $h(s) \leq \text{cost}(a) + h(s')$

A*: Monotonicity Lemma (2)

Proof.

on 1.:

Let n' be a child node of n via action a .

Let $s = n.\text{state}$, $s' = n'.\text{state}$.

- by definition of f : $f(n) = g(n) + h(s)$, $f(n') = g(n') + h(s')$
- by definition of g : $g(n') = g(n) + \text{cost}(a)$
- by consistency of h : $h(s) \leq \text{cost}(a) + h(s')$

∴ $f(n) = g(n) + h(s) \leq g(n) + \text{cost}(a) + h(s')$
 $= g(n') + h(s') = f(n')$

A*: Monotonicity Lemma (2)

Proof.

on 1.:

Let n' be a child node of n via action a .

Let $s = n.\text{state}$, $s' = n'.\text{state}$.

- by definition of f : $f(n) = g(n) + h(s)$, $f(n') = g(n') + h(s')$
- by definition of g : $g(n') = g(n) + \text{cost}(a)$
- by consistency of h : $h(s) \leq \text{cost}(a) + h(s')$

↝ $f(n) = g(n) + h(s) \leq g(n) + \text{cost}(a) + h(s')$
 $= g(n') + h(s') = f(n')$

on 2.: follows directly from 1.

...

A*: Monotonicity Lemma (3)

Proof (continued).

on 3:

- Let f_b be the minimal f value in $open$ **at the beginning** of a **while** loop iteration in A*. Let n be the removed node with $f(n) = f_b$.

A*: Monotonicity Lemma (3)

Proof (continued).

on 3:

- Let f_b be the minimal f value in $open$ **at the beginning** of a **while** loop iteration in A*. Let n be the removed node with $f(n) = f_b$.
- to show:** at the end of the iteration the minimal f value in $open$ is at least f_b .

A*: Monotonicity Lemma (3)

Proof (continued).

on 3:

- Let f_b be the minimal f value in $open$ **at the beginning** of a **while** loop iteration in A*. Let n be the removed node with $f(n) = f_b$.
- to show:** at the end of the iteration the minimal f value in $open$ is at least f_b .
- We must consider the operations modifying $open$: $open.pop_min$ and $open.insert$.

A*: Monotonicity Lemma (3)

Proof (continued).

on 3:

- Let f_b be the minimal f value in $open$ **at the beginning** of a **while** loop iteration in A*. Let n be the removed node with $f(n) = f_b$.
- to show:** at the end of the iteration the minimal f value in $open$ is at least f_b .
- We must consider the operations modifying $open$: $open.pop_min$ and $open.insert$.
- $open.pop_min$ can never decrease the minimal f value in $open$ (only potentially increase it).

A*: Monotonicity Lemma (3)

Proof (continued).

on 3:

- Let f_b be the minimal f value in $open$ at the beginning of a **while** loop iteration in A*. Let n be the removed node with $f(n) = f_b$.
- to show:** at the end of the iteration the minimal f value in $open$ is at least f_b .
- We must consider the operations modifying $open$: $open.pop_min$ and $open.insert$.
- $open.pop_min$ can never decrease the minimal f value in $open$ (only potentially increase it).
- The nodes n' added with $open.insert$ are children of n and hence satisfy $f(n') \geq f(n) = f_b$ according to part 1.

Optimality of A* without Reopening

Optimality of A* without Reopening

Theorem (optimality of A* without reopening)

A without reopening is optimal when using an admissible and consistent heuristic.*

Proof.

From the monotonicity lemma, the sequence of f values of nodes removed from the open list is non-decreasing.

- ~ If multiple nodes with the same state s are removed from the open list, then their g values are non-decreasing.
- ~ If we allowed reopening, it would never happen.
- ~ With consistent heuristics, A* without reopening behaves the same way as A* with reopening.

The result follows because A* with reopening and admissible heuristics is optimal.

Time Complexity of A*

Time Complexity of A* (1)

What is the time complexity of A*?

- depends strongly on the quality of the heuristic
- an extreme case: $h = 0$ for all states
 - ~ A* identical to uniform cost search
- another extreme case: $h = h^*$ and $cost(a) > 0$ for all actions a
 - ~ A* only expands nodes along an optimal solution
 - ~ $O(\ell^*)$ expanded nodes, $O(\ell^* b)$ generated nodes, where
 - ℓ^* : length of the found optimal solution
 - b : branching factor

Time Complexity of A* (2)

more precise analysis:

- dependency of the runtime of A* on **heuristic error**

example:

- unit cost problems with
- constant branching factor** and
- constant absolute error**: $|h^*(s) - h(s)| \leq c$ for all $s \in S$

time complexity:

- if state space is a tree: time complexity of A* grows linearly in solution length (Pohl 1969; Gaschnig 1977)
- general search spaces: runtime of A* grows exponentially in solution length (Helmert & Röger 2008)

Overhead of Reopening

How does reopening affect runtime?

- For most practical state spaces and inconsistent admissible heuristics, the number of reopened nodes is **negligible**.
- exceptions** exist:
Martelli (1977) constructed state spaces with n states where **exponentially** many (in n) node reopenings occur in A*.
(\rightsquigarrow exponentially worse than uniform cost search)

Practical Evaluation of A* (1)

9	2	12	6
5	7	14	13
3		1	11
15	4	10	8

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

h_1 : number of tiles in wrong cell (**misplaced tiles**)

h_2 : sum of distances of tiles to their goal cell (**Manhattan distance**)

Practical Evaluation of A* (2)

- experiments with random initial states, generated by **random walk** from goal state
- entries show **median** of number of **generated nodes** for 101 random walks of the same length N

N	generated nodes		
	BFS-Graph	A* with h_1	A* with h_2
10	63	15	15
20	1,052	28	27
30	7,546	77	42
40	72,768	227	64
50	359,298	422	83
60	> 1,000,000	7,100	307
70	> 1,000,000	12,769	377
80	> 1,000,000	62,583	849
90	> 1,000,000	162,035	1,522
100	> 1,000,000	690,497	4,964

Introduction
○○○

Monotonicity Lemma
○○○○

Optimality of A* without Reopening
○○

Time Complexity of A*
○○○○○○○

Summary
●○

Summary

Summary

- A* without reopening using an **admissible and consistent** heuristic is optimal
- key property **monotonicity lemma** (with consistent heuristics):
 - f values never decrease along paths considered by A*
 - sequence of f values of expanded nodes is non-decreasing
- time complexity depends on heuristic and shape of state space
 - precise details complex and depend on many aspects
 - reopening increases runtime exponentially in degenerate cases, but usually negligible overhead
 - small improvements in heuristic values often lead to exponential improvements in runtime