

Foundations of Artificial Intelligence

19. State-Space Search: Properties of A*, Part II

Malte Helmert

University of Basel

March 27, 2019

Foundations of Artificial Intelligence

March 27, 2019 — 19. State-Space Search: Properties of A*, Part II

19.1 Introduction

19.2 Monotonicity Lemma

19.3 Optimality of A* without Reopening

19.4 Time Complexity of A*

19.5 Summary

State-Space Search: Overview

Chapter overview: state-space search

- ▶ 5.–7. Foundations
- ▶ 8.–12. Basic Algorithms
- ▶ 13.–19. Heuristic Algorithms
 - ▶ 13. Heuristics
 - ▶ 14. Analysis of Heuristics
 - ▶ 15. Best-first Graph Search
 - ▶ 16. Greedy Best-first Search, A*, Weighted A*
 - ▶ 17. IDA*
 - ▶ 18. Properties of A*, Part I
 - ▶ 19. Properties of A*, Part II

19.1 Introduction

Optimality of A* without Reopening

We now study A* without reopening.

- ▶ For A* without reopening, admissibility and consistency together guarantee optimality.
- ▶ We prove this on the following slides, again beginning with a basic lemma.
- ▶ Either of the two properties on its own would **not** be sufficient for optimality. (How would one prove this?)

19.2 Monotonicity Lemma

Reminder: A* without Reopening

reminder: A* without reopening

A* without Reopening

```
open := new MinHeap ordered by  $\langle f, h \rangle$ 
if  $h(\text{init}) < \infty$ :
    open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
    n := open.pop_min()
    if n.state  $\notin$  closed:
        closed.insert(n)
        if is_goal(n.state):
            return extract_path(n)
        for each  $\langle a, s' \rangle \in \text{succ}(n.state)$ :
            if  $h(s') < \infty$ :
                n' := make_node(n, a, s')
                open.insert(n')
return unsolvable
```

A*: Monotonicity Lemma (1)

Lemma (monotonicity of A* with consistent heuristics)

Consider A* with a **consistent** heuristic.

Then:

- ① If n' is a child node of n , then $f(n') \geq f(n)$.
- ② On all paths generated by A*, f values are non-decreasing.
- ③ The sequence of f values of the nodes expanded by A* is non-decreasing.

German: Monotonielemma

A*: Monotonicity Lemma (2)

Proof.

on 1.:

Let n' be a child node of n via action a .

Let $s = n.\text{state}$, $s' = n'.\text{state}$.

- ▶ by definition of f : $f(n) = g(n) + h(s)$, $f(n') = g(n') + h(s')$
- ▶ by definition of g : $g(n') = g(n) + \text{cost}(a)$
- ▶ by consistency of h : $h(s) \leq \text{cost}(a) + h(s')$
- ↝ $f(n) = g(n) + h(s) \leq g(n) + \text{cost}(a) + h(s') = g(n') + h(s') = f(n')$

on 2.: follows directly from 1.

...

A*: Monotonicity Lemma (3)

Proof (continued).

on 3:

- ▶ Let f_b be the minimal f value in open at the beginning of a **while** loop iteration in A*.
- Let n be the removed node with $f(n) = f_b$.
- ▶ to show: at the end of the iteration the minimal f value in open is at least f_b .
- ▶ We must consider the operations modifying open : open.pop_min and open.insert .
- ▶ open.pop_min can never decrease the minimal f value in open (only potentially increase it).
- ▶ The nodes n' added with open.insert are children of n and hence satisfy $f(n') \geq f(n) = f_b$ according to part 1.

19.3 Optimality of A* without Reopening

Optimality of A* without Reopening

Theorem (optimality of A* without reopening)

A* without reopening is optimal when using an **admissible** and **consistent** heuristic.

Proof.

From the monotonicity lemma, the sequence of f values of nodes removed from the open list is non-decreasing.

- ↝ If multiple nodes with the same state s are removed from the open list, then their g values are non-decreasing.
- ↝ If we allowed reopening, it would never happen.
- ↝ With consistent heuristics, A* without reopening behaves the same way as A* with reopening.

The result follows because A* with reopening and admissible heuristics is optimal.

19.4 Time Complexity of A*

Time Complexity of A* (2)

more precise analysis:

- dependency of the runtime of A* on **heuristic error**

example:

- unit cost problems with
- **constant branching factor** and
- **constant absolute error**: $|h^*(s) - h(s)| \leq c$ for all $s \in S$

time complexity:

- if state space is a tree: time complexity of A* grows linearly in solution length (Pohl 1969; Gaschnig 1977)
- **general search spaces**: runtime of A* grows exponentially in solution length (Helmert & Röger 2008)

Time Complexity of A* (1)

What is the time complexity of A*?

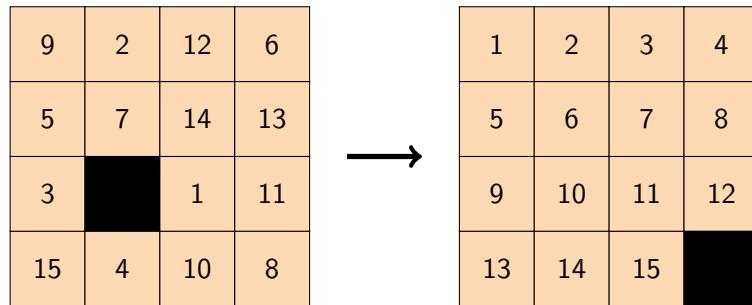
- depends strongly on the quality of the heuristic
- an extreme case: $h = 0$ for all states
 - ~~ A* identical to uniform cost search
- another extreme case: $h = h^*$ and $cost(a) > 0$ for all actions a
 - ~~ A* only expands nodes along an optimal solution
 - ~~ $O(\ell^*)$ expanded nodes, $O(\ell^* b)$ generated nodes, where
 - ℓ^* : length of the found optimal solution
 - b : branching factor

Overhead of Reopening

How does reopening affect runtime?

- For most practical state spaces and inconsistent admissible heuristics, the number of reopened nodes is **negligible**.
- **exceptions** exist:
Martelli (1977) constructed state spaces with n states where **exponentially** many (in n) node reopenings occur in A*.
(~~ exponentially worse than uniform cost search)

Practical Evaluation of A* (1)



h_1 : number of tiles in wrong cell (**misplaced tiles**)

h_2 : sum of distances of tiles to their goal cell (**Manhattan distance**)

19.5 Summary

Practical Evaluation of A* (2)

- experiments with random initial states, generated by **random walk** from goal state
- entries show **median** of number of **generated nodes** for 101 random walks of the same length N

N	generated nodes		
	BFS-Graph	A^* with h_1	A^* with h_2
10	63	15	15
20	1,052	28	27
30	7,546	77	42
40	72,768	227	64
50	359,298	422	83
60	> 1,000,000	7,100	307
70	> 1,000,000	12,769	377
80	> 1,000,000	62,583	849
90	> 1,000,000	162,035	1,522
100	> 1,000,000	690,497	4,964

Summary

- A* without reopening** using an **admissible and consistent** heuristic is optimal
- key property **monotonicity lemma** (with consistent heuristics):
 - f values never decrease along paths considered by A*
 - sequence of f values of expanded nodes is non-decreasing
- time complexity depends on heuristic and shape of state space
 - precise details complex and depend on many aspects
 - reopening increases runtime exponentially in degenerate cases, but usually negligible overhead
 - small improvements in heuristic values often lead to exponential improvements in runtime