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State-Space Search: Overview

Chapter overview: state-space search
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Optimality of A* without Reopening

We now study A™ without reopening.

» For A* without reopening, admissibility and consistency
together guarantee optimality.

» We prove this on the following slides,
again beginning with a basic lemma.

» Either of the two properties on its own would not be sufficient
for optimality. (How would one prove this?)
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Reminder: A* without Reopening

reminder: A* without reopening

A* without Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oc:
n' := make_node(n, a, s’)
open.insert(n’)

return unsolvable
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19.2 Monotonicity Lemma
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A*: Monotonicity Lemma (1)

Lemma (monotonicity of A* with consistent heuristics)
Consider A* with a consistent heuristic.
Then:
@ Ifn’ is a child node of n, then f(n') > f(n).
@ On all paths generated by A*, f values are non-decreasing.
© The sequence of f values of the nodes expanded by A*
is non-decreasing.

German: Monotonielemma
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A*: Monotonicity Lemma (2)

Proof.

on 1.

Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

» by definition of f: f(n) = g(n) + h(s), f(n') = g(n’) + h(s)
» by definition of g: g(n") = g(n) + cost(a)
» by consistency of h: h(s) < cost(a) + h(s’)
~ f(n) = g(n) + h(s) < g(n) + cost(a) + h(s")
= g(n') + h(s") = f(n')

on 2.: follows directly from 1.
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A*: Monotonicity Lemma (3)

Proof (continued).
on 3:
» Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with f(n) = f.

» to show: at the end of the iteration
the minimal f value in open is at least f,.

» We must consider the operations modifying open:
open.pop_min and open.insert.

> open.pop_min can never decrease the minimal f value
in open (only potentially increase it).

» The nodes n’ added with open.insert are children of n
and hence satisfy f(n') > f(n) = f,, according to part 1.

O
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19.3 Optimality of A" without
Reopening
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Optimality of A* without Reopening

Theorem (optimality of A* without reopening)

A" without reopening is optimal when using
an admissible and consistent heuristic.

Proof.
From the monotonicity lemma, the sequence of f values
of nodes removed from the open list is non-decreasing.

~ If multiple nodes with the same state s are removed
from the open list, then their g values are non-decreasing.

~> If we allowed reopening, it would never happen.

~ With consistent heuristics, A* without reopening
behaves the same way as A* with reopening.

The result follows because A* with reopening
and admissible heuristics is optimal. ]
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19.4 Time Complexity of A"
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Time Complexity of A* (1)

What is the time complexity of A*?
» depends strongly on the quality of the heuristic
> an extreme case: h = 0 for all states
~+ A" identical to uniform cost search
» another extreme case: h = h* and cost(a) > 0
for all actions a

~+ A" only expands nodes along an optimal solution

~» O(£*) expanded nodes, O(¢*b) generated nodes, where
> (*: length of the found optimal solution
> b: branching factor
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Time Complexity of A* (2)

more precise analysis:
» dependency of the runtime of A* on heuristic error

example:
> unit cost problems with
» constant branching factor and
» constant absolute error: |h*(s) — h(s)| < c foralls€ S

time complexity:
» if state space is a tree: time complexity of A* grows
linearly in solution length (Pohl 1969; Gaschnig 1977)

> general search spaces: runtime of A* grows
exponentially in solution length (Helmert & Roger 2008)
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Overhead of Reopening

How does reopening affect runtime?

» For most practical state spaces and inconsistent admissible
heuristics, the number of reopened nodes is negligible.

> exceptions exist:
Martelli (1977) constructed state spaces with n states
where exponentially many (in n) node reopenings occur in A*.
(~ exponentially worse than uniform cost search)
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Practical Evaluation of A* (1)

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 1 11 9 10 | 11 | 12

15 4 10 8 13 | 14 | 15 .

hi: number of tiles in wrong cell (misplaced tiles)
hp: sum of distances of tiles to their goal cell (Manhattan distance)
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Practical Evaluation of A" (2)

» experiments with random initial states,
generated by random walk from goal state

> entries show median of number of generated nodes
for 101 random walks of the same length N

generated nodes

N BFS-Graph | A* with b1 | A* with h

10 63 15 15

20 1,052 28 27

30 7,546 7 42

40 72,768 227 64

50 359,298 422 83

60 || > 1,000,000 7,100 307

70 || > 1,000,000 12,769 377

80 || > 1,000,000 62,583 849

90 || > 1,000,000 162,035 1,522

100 || > 1,000,000 690,497 4,964
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19.5 Summary
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Summary

» A" without reopening using an admissible and consistent
heuristic is optimal
» key property monotonicity lemma (with consistent heuristics):
» f values never decrease along paths considered by A*
» sequence of f values of expanded nodes is non-decreasing
> time complexity depends on heuristic and shape of state space

> precise details complex and depend on many aspects

> reopening increases runtime exponentially in degenerate cases,
but usually negligible overhead

» small improvements in heuristic values often
lead to exponential improvements in runtime
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