Foundations of Artificial Intelligence
19. State-Space Search: Properties of A*, Part Il

Malte Helmert

University of Basel

March 27, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 1/20

Foundations of Artificial Intelligence

March 27, 2019 — 19. State-Space Search: Properties of A*, Part Il
19.1 Introduction
19.2 Monotonicity Lemma
19.3 Optimality of A* without Reopening
19.4 Time Complexity of A*

19.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019

State-Space Search: Overview

Chapter overview: state-space search

» 5.—7. Foundations

> 8.—12. Basic Algorithms

» 13.-19.
13.
14.
15.
16.
17.
18.
19.

vV VY VY vy VY VvYY

Heuristic Algorithms

Heuristics

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A*, Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part I

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 3/20

19. State-Space Search: Properties of A*, Part Il

19.1 Introduction

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019

Introduction

4 /20

19. State-Space Search: Properties of A*, Part Il Introduction

Optimality of A* without Reopening

We now study A™ without reopening.

» For A* without reopening, admissibility and consistency
together guarantee optimality.

» We prove this on the following slides,
again beginning with a basic lemma.

» Either of the two properties on its own would not be sufficient
for optimality. (How would one prove this?)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 5 /20

19. State-Space Search: Properties of A*, Part Il

Reminder: A* without Reopening

reminder: A* without reopening

A* without Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oc:
n' := make_node(n, a, s’)
open.insert(n’)

return unsolvable
M. Helmert (University of Basel)

Foundations of Artificial Intelligence March 27, 2019

Introduction

6/

20

19. State-Space Search: Properties of A*, Part Il Monotonicity Lemma

19.2 Monotonicity Lemma

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 7 /20

19. State-Space Search: Properties of A*, Part Il

A*: Monotonicity Lemma (1)

Lemma (monotonicity of A* with consistent heuristics)
Consider A* with a consistent heuristic.
Then:
@ Ifn’ is a child node of n, then f(n') > f(n).
@ On all paths generated by A*, f values are non-decreasing.
© The sequence of f values of the nodes expanded by A*
is non-decreasing.

German: Monotonielemma

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019

g /

Monotonicity Lemma

19. State-Space Search: Properties of A*, Part Il Monotonicity Lemma

A*: Monotonicity Lemma (2)

Proof.

on 1.

Let n’ be a child node of n via action a.
Let s = n.state, s’ = n’.state.

» by definition of f: f(n) = g(n) + h(s), f(n') = g(n’) + h(s)
» by definition of g: g(n") = g(n) + cost(a)
» by consistency of h: h(s) < cost(a) + h(s’)
~ f(n) = g(n) + h(s) < g(n) + cost(a) + h(s")
= g(n') + h(s") = f(n')

on 2.: follows directly from 1.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 9 /20

19. State-Space Search: Properties of A*, Part Il Monotonicity Lemma

A*: Monotonicity Lemma (3)

Proof (continued).
on 3:
» Let f, be the minimal f value in open
at the beginning of a while loop iteration in A*.
Let n be the removed node with f(n) = f.

» to show: at the end of the iteration
the minimal f value in open is at least f,.

» We must consider the operations modifying open:
open.pop_min and open.insert.

> open.pop_min can never decrease the minimal f value
in open (only potentially increase it).

» The nodes n’ added with open.insert are children of n
and hence satisfy f(n') > f(n) = f,, according to part 1.

O

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 10 / 20

19. State-Space Search: Properties of A*, Part Il Optimality of A* without Reopening

19.3 Optimality of A" without
Reopening

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 11 /20

19. State-Space Search: Properties of A*, Part || Optimality of A* without Reopening

Optimality of A* without Reopening

Theorem (optimality of A* without reopening)

A" without reopening is optimal when using
an admissible and consistent heuristic.

Proof.
From the monotonicity lemma, the sequence of f values
of nodes removed from the open list is non-decreasing.

~ If multiple nodes with the same state s are removed
from the open list, then their g values are non-decreasing.

~> If we allowed reopening, it would never happen.

~ With consistent heuristics, A* without reopening
behaves the same way as A* with reopening.

The result follows because A* with reopening
and admissible heuristics is optimal.]

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 12 / 20

19. State-Space Search: Properties of A*, Part || Time Complexity of A™

19.4 Time Complexity of A"

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 13 /20

19. State-Space Search: Properties of A*, Part Il Time Complexity of A™

Time Complexity of A* (1)

What is the time complexity of A*?
» depends strongly on the quality of the heuristic
> an extreme case: h = 0 for all states
~+ A" identical to uniform cost search
» another extreme case: h = h* and cost(a) > 0
for all actions a

~+ A" only expands nodes along an optimal solution

~» O(£*) expanded nodes, O(¢*b) generated nodes, where
> (*: length of the found optimal solution
> b: branching factor

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 14 / 20

19. State-Space Search: Properties of A*, Part Il Time Complexity of A™

Time Complexity of A* (2)

more precise analysis:
» dependency of the runtime of A* on heuristic error

example:
> unit cost problems with
» constant branching factor and
» constant absolute error: |h*(s) — h(s)| < c foralls€ S

time complexity:
» if state space is a tree: time complexity of A* grows
linearly in solution length (Pohl 1969; Gaschnig 1977)

> general search spaces: runtime of A* grows
exponentially in solution length (Helmert & Roger 2008)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 15 / 20

19. State-Space Search: Properties of A*, Part Il Time Complexity of A™

Overhead of Reopening

How does reopening affect runtime?

» For most practical state spaces and inconsistent admissible
heuristics, the number of reopened nodes is negligible.

> exceptions exist:
Martelli (1977) constructed state spaces with n states
where exponentially many (in n) node reopenings occur in A*.
(~ exponentially worse than uniform cost search)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 16 / 20

19. State-Space Search: Properties of A*, Part || Time Complexity of A*

Practical Evaluation of A* (1)

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 1 11 9 10 | 11 | 12

15 4 10 8 13 | 14 | 15 .

hi: number of tiles in wrong cell (misplaced tiles)
hp: sum of distances of tiles to their goal cell (Manhattan distance)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 17 / 20

19. State-Space Search: Properties of A*, Part || Time Complexity of A*

Practical Evaluation of A" (2)

» experiments with random initial states,
generated by random walk from goal state

> entries show median of number of generated nodes
for 101 random walks of the same length N

generated nodes

N BFS-Graph | A* with b1 | A* with h

10 63 15 15

20 1,052 28 27

30 7,546 7 42

40 72,768 227 64

50 359,298 422 83

60 || > 1,000,000 7,100 307

70 || > 1,000,000 12,769 377

80 || > 1,000,000 62,583 849

90 || > 1,000,000 162,035 1,522

100 || > 1,000,000 690,497 4,964
M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27,2019 18 / 20
19. State-Space Search: Properties of A*, Part || Summary

19. State-Space Search: Properties of A*, Part Il Summary

19.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 19 / 20

Summary

» A" without reopening using an admissible and consistent
heuristic is optimal
» key property monotonicity lemma (with consistent heuristics):
» f values never decrease along paths considered by A*
» sequence of f values of expanded nodes is non-decreasing
> time complexity depends on heuristic and shape of state space

> precise details complex and depend on many aspects

> reopening increases runtime exponentially in degenerate cases,
but usually negligible overhead

» small improvements in heuristic values often
lead to exponential improvements in runtime

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 27, 2019 20 / 20

	Introduction
	Monotonicity Lemma
	Optimality of A* without Reopening
	Time Complexity of A*
	Summary

