Foundations of Artificial Intelligence
18. State-Space Search: Properties of A*, Part |

Malte Helmert

University of Basel

March 27, 2019

State-Space Search: Overview

Chapter overview: state-space search

@ 5.—7. Foundations

e 8.—12. Basic Algorithms
e 13.-19

13.
14.
15.
16.
17.
18.
19.

Heuristic Algorithms

Heuristics

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A", Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part ||

Introduction

Introduction
0@00000

Optimality of A*

@ advantage of A* over greedy search:
optimal for heuristics with suitable properties

@ very important result!

~» next chapters: a closer look at A*
e A* with reopening ~~ this chapter

e A* without reopening ~~ next chapter

Introduction
fe]e] Yololele}

Optimality of A* with Reopening

In this chapter, we prove that A* with reopening is optimal
when using admissible heuristics.

For this purpose, we
@ give some basic definitions
@ prove two lemmas regarding the behaviour of A*

@ use these to prove the main result

Introduction Opti Continuation Lemma f d Lemma Optimality of A™ with Reopening Summar
0008000

Reminder: A* with Reopening

reminder: A* with reopening

A* with Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oc:
open.insert(make_root_node())
distances := new HashTable
while not open.is_empty():
n := open.pop_min()
if distances.lookup(n.state) = none or g(n) < distances|n.state]:
distances|n.state] := g(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oo:
n’ := make_node(n, a, s")
open.insert(n")
return unsolvable

Introduction
0000800

Solvable States

Definition (solvable)

A state s of a state space is called solvable if h*(s) < oco.

German: losbar

Introduction
00000e0

Optimal Paths to States

Definition (g*)
Let s be a state of a state space with initial state sg.

We write g*(s) for the cost of the optimal (cheapest) path
from sg to s (oo if s is unreachable).

Remarks:
@ g is defined for nodes, g* for states (\Why?)

o g*(n.state) < g(n) for all nodes n
generated by a search algorithm (Why?)

Introduction
000000e

Settled States in A*

Definition (settled)

A state s is called settled at a given point
during the execution of A* (with or without reopening)
if s is included in distances and distances[s] = g*(s).

German: erledigt

Optimal Continuation Lemma

@®00000

Optimal Continuation Lemma

Optimal Continuation Lemma
0®0000

Optimal Continuation Lemma

We now show the first important result for A* with reopening:

Lemma (optimal continuation lemma)

Consider A* with reopening using a safe heuristic
at the beginning of any iteration of the while loop.

If

@ state s is settled,

e state s’ is a solvable successor of s, and

@ an optimal path from sy to s’ of the form (sg,...,s,s’) exists,
then

o s’ is settled or

@ open contains a node n' with n'.state = s’ and g(n’) = g*(s').

German: Optimale-Fortsetzungs-Lemma

Optimal Continuation Lemma
00®000

Optimal Continuation Lemma: Intuition

(Proof follows on the next slides.)

Intuitively, the lemma states:

If no optimal path to a given state has been found yet,
open must contain a “good” node that contributes
to finding an optimal path to that state.

(This potentially requires multiple applications of the lemma
along an optimal path to the state.)

Optimal Continuation Lemma
000®00

Optimal Continuation Lemma: Proof (1)

Consider states s and s’ with the given properties
at the start of some iteration (‘“iteration A") of A*.

Optimal Continuation Lemma
000®00

Optimal Continuation Lemma: Proof (1)

Proof.

Consider states s and s’ with the given properties
at the start of some iteration (‘“iteration A") of A*.

Because s is settled, an earlier iteration (“iteration B")
set distances[s] := g*(s).

Optimal Continuation Lemma
000®00

Optimal Continuation Lemma: Proof (1)

Proof.

Consider states s and s’ with the given properties
at the start of some iteration (‘“iteration A") of A*.

Because s is settled, an earlier iteration (“iteration B")
set distances[s] := g*(s).

Thus iteration B removed a node n
with n.state = s and g(n) = g*(s) from open.

Optimal Continuation Lemma
000®00

Optimal Continuation Lemma: Proof (1)

Proof.

Consider states s and s’ with the given properties
at the start of some iteration (‘“iteration A") of A*.

Because s is settled, an earlier iteration (“iteration B")
set distances[s] := g*(s).
Thus iteration B removed a node n

with n.state = s and g(n) = g*(s) from open.

A* did not terminate in iteration B.
(Otherwise iteration A would not exist.)
Hence n was expanded in iteration B.

Optimal Continuation Lemma
0000e0

Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s’ of s.
Because s’ is solvable, we have h*(s") < oc.
Because h is safe, this implies h(s') < co.
Hence a successor node n’ was generated for s’.

Optimal Continuation Lemma
0000e0

Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s’ of s.
Because s’ is solvable, we have h*(s") < oc.
Because h is safe, this implies h(s') < co.
Hence a successor node n’ was generated for s’.

This node n’ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s’
after iteration B.

Optimal Continuation Lemma
0000e0

Optimal Continuation Lemma: Proof (2)

Proof (continued).

This expansion considered the successor s’ of s.
Because s’ is solvable, we have h*(s") < oc.
Because h is safe, this implies h(s') < co.
Hence a successor node n’ was generated for s’.

This node n’ satisfies the consequence of the lemma.
Hence the criteria of the lemma were satisfied for s and s’
after iteration B.

To complete the proof, we show: if the consequence
of the lemma is satisfied at the beginning of an iteration,
it is also satisfied at the beginning of the next iteration.

Optimal Continuation Lemma
[eleYelelel)

Optimal Continuation Lemma: Proof (3)

Proof (continued).

o If s’ is settled at the beginning of an iteration,
it remains settled until termination.

Optimal Continuation Lemma
[eleYelelel)

Optimal Continuation Lemma: Proof (3)

Proof (continued).

o If s’ is settled at the beginning of an iteration,
it remains settled until termination.

e If s’ is not yet settled and open contains a node n’
with n’.state = s’ and g(n') = g*(s')
at the beginning of an iteration, then either
the node remains in open during the iteration,
or n’ is removed during the iteration and s’ becomes settled.

Ol

o

f-Bound Lemma

f-Bound Lemma

0e000

f-Bound Lemma

We need a second lemma:

Lemma (f-bound lemma)

Consider A* with reopening and an admissible heuristic
applied to a solvable state space with optimal solution cost c*.

*

Then open contains a node n with f(n) < c*
at the beginning of each iteration of the while loop.

German: f-Schranken-Lemma

f-Bound Lemma
0000

f-Bound Lemma: Proof (1)

Proof.

Consider the situation at the beginning of any iteration
of the while loop.

Let (sp,...,Sn) be an optimal solution.
(Here we use that the state space is solvable.)

f-Bound Lemma
0000

f-Bound Lemma: Proof (1)

Proof.

Consider the situation at the beginning of any iteration
of the while loop.

Let (sp,...,Sn) be an optimal solution.
(Here we use that the state space is solvable.)

Let s; be the first state in the sequence that is not settled.

(Not all states in the sequence can be settled:
Sp is a goal state, and when a goal state is inserted
into distances, A* terminates.)

f-Bound Lemma
000e0

f-Bound Lemma: Proof (2)

Proof (continued).

Case 1: i=0

Because sp is not settled yet, we are at the first iteration
of the while loop.

f-Bound Lemma
000e0

f-Bound Lemma: Proof (2)

Proof (continued).

Case 1: i=0

Because sp is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(sp) < oo.

f-Bound Lemma
000e0

f-Bound Lemma: Proof (2)

Proof (continued).

Case 1: i=0

Because sp is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(sp) < oo.

Hence open contains the root ng.

f-Bound Lemma
000e0

f-Bound Lemma: Proof (2)

Proof (continued).

Case 1: i=0

Because sp is not settled yet, we are at the first iteration
of the while loop.

Because the state space is solvable and h is admissible,
we have h(sp) < oo.

Hence open contains the root ng.

We obtain: f(ng) = g(no) + h(so) = 0+ h(so) < h*(sp) = c¢*,
where “<" uses the admissibility of h.

This concludes the proof for this case.

f-Bound Lemma
ooooe

f-Bound Lemma: Proof (3)

Proof (continued).

Case2: i >0
Then s;_1 is settled and s; is not settled.
Moreover, s; is a solvable successor of s;_1 and (sp,...,si—1,Si)

is an optimal path from sy to s;.

Continuation Lemma f-Bound Lemma Optimality of A™ with Reopening
O000e OO0

f-Bound Lemma: Proof (3)

Proof (continued).

Case 2: i >0

Then s;_1 is settled and s; is not settled.
Moreover, s; is a solvable successor of s;_1 and (sp,...,si_1,5;)
is an optimal path from sy to s;.

We can hence apply the optimal continuation lemma
(with s = s;_1 and s’ = s;) and obtain:
(A) s; is settled, or

(B) open contains n’ with n'.state = s; and g(n’) = g*(s;).

Continuation Lemma f-Bound Lemma Optimality of A™ with Reopening
O000e OO0

f-Bound Lemma: Proof (3)

Proof (continued).

Case 2: i >0

Then s;_1 is settled and s; is not settled.
Moreover, s; is a solvable successor of s;_1 and (sp,...,si_1,5;)
is an optimal path from sy to s;.

We can hence apply the optimal continuation lemma
(with s = s;_1 and s’ = s;) and obtain:

(A) s; is settled, or
(B) open contains n’ with n'.state = s; and g(n’) = g*(s;).

Because (A) is false, (B) must be true.

Continuation Lemma f-Bound Lemma Optimality of A™ with Reopening Summar
0oo0e

f-Bound Lemma: Proof (3)

Proof (continued).
Case 2: i >0

Then s;_1 is settled and s; is not settled.
Moreover, s; is a solvable successor of s;_1 and (sp,...,si_1,5;)
is an optimal path from sy to s;.

We can hence apply the optimal continuation lemma

(with s = s;_1 and s’ = s;) and obtain:

(A) s; is settled, or

(B) open contains n’ with n'.state = s; and g(n’) = g*(s;).
Because (A) is false, (B) must be true.

We conclude: open contains n’ with
f(n') = g(n') + h(si) = g7(si) + h(si) < g"(si) + h*(si) = c*,
where “<" uses the admissibility of A.]

V.

Optimality of A* with Reopening

@00

Optimality of A* with Reopening

Optimality of A* with Reopening
oeo

Optimality of A* with Reopening

We can now show the main result of this chapter:

Theorem (optimality of A* with reopening)

A" with reopening is optimal when using an admissible heuristic.

Continuation Lemma i emma Optimality of A* with Reopening
ooe

Optimality of A* with Reopening: Proof

Proof.
By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

Continuation Lemma i emma Optimality of A* with Reopening
ooe

Optimality of A* with Reopening: Proof

Proof.
By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

This means that in the last iteration, the algorithm
removes a node n with g(n) = ¢ > ¢* from open.

Continuation Lemma i emma Optimality of A* with Reopening
ooe

Optimality of A* with Reopening: Proof

Proof.
By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

This means that in the last iteration, the algorithm
removes a node n with g(n) = ¢ > ¢* from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

Continuation Lemma i emma Optimality of A* with Reopening
ooe

Optimality of A* with Reopening: Proof

Proof.
By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

This means that in the last iteration, the algorithm
removes a node n with g(n) = ¢ > ¢* from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:

f(n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c*.

Continuation Lemma - emma Optimality of A* with Reopening Summar
ooe oo

Optimality of A* with Reopening: Proof

Proof.
By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c*
where A* with reopening and an admissible heuristic
returns a solution with cost ¢ > c*.

This means that in the last iteration, the algorithm
removes a node n with g(n) = ¢ > ¢* from open.

With h(n.state) = 0 (because h is admissible
and hence goal-aware), this implies:
f(n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c*.

A* always removes a node n with minimal f value from open.
With f(n) > c*, we get a contradiction to the f-bound lemma,
which completes the proof. [

o’

Summary

Summary
oce

Summary

@ A™ with reopening using an admissible heuristic is optimal.

@ The proof is based on the following lemmas
that hold for solvable state spaces and admissible heuristics:

e optimal continuation lemma: The open list always contains
nodes that make progress towards an optimal solution.

e f-bound lemma: The minimum f value in the open list
at the beginning of each A* iteration is a lower bound
on the optimal solution cost.

	Introduction
	

	Optimal Continuation Lemma
	

	f-Bound Lemma
	

	Optimality of A* with Reopening
	

	Summary
	

