Foundations of Artificial Intelligence
17. State-Space Search: IDA*

Malte Helmert

University of Basel

March 25, 2019



State-Space Search: Overview

Chapter overview: state-space search

@ 5.—7. Foundations

e 8.—12. Basic Algorithms
e 13.-19

13.
14.
15.
16.
17.
18.
19.

Heuristic Algorithms

Heuristics

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A", Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part Il



IDA™: Idea



IDA™: Idea

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS



The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

@ bounded depth-first search with increasing bounds
@ instead of depth we bound f
(in this chapter f(n) := g(n) + h(n.state) as in A*)
~ IDA* (iterative-deepening A*)

@ tree search, unlike the previous best-first search algorithms



IDA*: Algorithm

IDA™: Algorithm



IDA*: Algorithm
0®000

Remarks on the Algorithm (1)

@ We describe an IDA* implementation
with explicit search nodes.

@ More efficient implementations leave search nodes implicit,
as in the depth-first search algorithm in Chapter 12.



IDA*: Algorithm
00®00

Remarks on the Algorithm (2)

@ Our recursive function calls yield two values:
o f.limit, the next useful f-bound for the subtree
considered by the call (or none if a solution was found)
o solution, the found solution (or none)
@ More efficient implementations store these values
(in instance variables of a class or in a closure)
to save time for passing these values.



IDA*: Algorithm

[eJele] Jo]

IDA™: Pseudo-Code (Main Procedure)

IDA*: Main Procedure

no := make_root_node()
f_limit :== 0
while f_limit # oo:
(f_limit, solution) := recursive_search(ng, f_limit)
if solution # none:
return solution
return unsolvable )




IDA™: Idea IDA*: Algorithm IDA*: Properties Summar
oooo0e oo

IDA™: Pseudo-Code (Depth-first Search)

function recursive_search(n, f_limit):

if f(n) > flimit:
return (f(n), none)

if is_goal(n.state):
return (none, extract_path(n))
next_limit := oo
for each (a,s’) € succ(n.state):
if h(s’) < oo:
n’ := make_node(n, a, s’)
(rec_limit, solution) := recursive_search(n’, f_limit)
if solution # none:
return (none, solution)
next_limit := min(next_limit, rec_limit)
return (next_limit, none)




IDA™: Properties



IDA*: Properties
oeo

IDA*: Properties

Inherits important properties of A* and depth-first search:
e semi-complete if h safe and cost(a) > 0 for all actions a
@ optimal if h admissible

@ space complexity O(¢b), where

e /: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)
e b: branching factor

~> proofs?



IDA*: Properties
ooe

IDA*: Discussion

@ compared to A* potentially considerable overhead
because no duplicates are detected
~~ exponentially slower in many state spaces
~ often combined with partial duplicate elimination
(cycle detection, transposition tables)

@ overhead due to iterative increases of f bound
often negligible, but not always
e especially problematic if action costs vary a lot:
then it can easily happen that each new f bound
only reaches a small number of new search nodes



Summary



Summary
oce

Summary

IDA* is a tree search variant of A*
based on iterative deepening depth-first search

main advantage: low space complexity

disadvantage: repeated work can be significant

most useful when there are few duplicates



	IDA*: Idea
	

	IDA*: Algorithm
	

	IDA*: Properties
	

	Summary
	


