
Foundations of Artificial Intelligence
17. State-Space Search: IDA∗

Malte Helmert

University of Basel

March 25, 2019



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

State-Space Search: Overview

Chapter overview: state-space search

5.–7. Foundations

8.–12. Basic Algorithms

13.–19. Heuristic Algorithms

13. Heuristics
14. Analysis of Heuristics
15. Best-first Graph Search
16. Greedy Best-first Search, A∗, Weighted A∗

17. IDA∗

18. Properties of A∗, Part I
19. Properties of A∗, Part II



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Idea



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

bounded depth-first search with increasing bounds

instead of depth we bound f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

 IDA∗ (iterative-deepening A∗)

tree search, unlike the previous best-first search algorithms



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

bounded depth-first search with increasing bounds

instead of depth we bound f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

 IDA∗ (iterative-deepening A∗)

tree search, unlike the previous best-first search algorithms



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Algorithm



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Remarks on the Algorithm (1)

We describe an IDA∗ implementation
with explicit search nodes.

More efficient implementations leave search nodes implicit,
as in the depth-first search algorithm in Chapter 12.



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Remarks on the Algorithm (2)

Our recursive function calls yield two values:

f limit, the next useful f -bound for the subtree
considered by the call (or none if a solution was found)
solution, the found solution (or none)

More efficient implementations store these values
(in instance variables of a class or in a closure)
to save time for passing these values.



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Pseudo-Code (Main Procedure)

IDA∗: Main Procedure

n0 := make root node()
f limit := 0
while f limit 6=∞:

〈f limit, solution〉 := recursive search(n0, f limit)
if solution 6= none:

return solution
return unsolvable



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Pseudo-Code (Depth-first Search)

function recursive search(n, f limit):

if f (n) > f limit:
return 〈f (n),none〉

if is goal(n.state):
return 〈none, extract path(n)〉

next limit :=∞
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
〈rec limit, solution〉 := recursive search(n′, f limit)
if solution 6= none:

return 〈none, solution〉
next limit := min(next limit, rec limit)

return 〈next limit,none〉



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Properties



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Properties

Inherits important properties of A∗ and depth-first search:

semi-complete if h safe and cost(a) > 0 for all actions a

optimal if h admissible

space complexity O(`b), where

`: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)
b: branching factor

 proofs?



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Discussion

compared to A∗ potentially considerable overhead
because no duplicates are detected

 exponentially slower in many state spaces
 often combined with partial duplicate elimination

(cycle detection, transposition tables)

overhead due to iterative increases of f bound
often negligible, but not always

especially problematic if action costs vary a lot:
then it can easily happen that each new f bound
only reaches a small number of new search nodes



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Summary



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Summary

IDA∗ is a tree search variant of A∗

based on iterative deepening depth-first search

main advantage: low space complexity

disadvantage: repeated work can be significant

most useful when there are few duplicates


	IDA*: Idea
	

	IDA*: Algorithm
	

	IDA*: Properties
	

	Summary
	


