
Foundations of Artificial Intelligence
17. State-Space Search: IDA∗

Malte Helmert

University of Basel

March 25, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 1 / 15

Foundations of Artificial Intelligence
March 25, 2019 — 17. State-Space Search: IDA∗

17.1 IDA∗: Idea

17.2 IDA∗: Algorithm

17.3 IDA∗: Properties

17.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 2 / 15

State-Space Search: Overview

Chapter overview: state-space search

I 5.–7. Foundations

I 8.–12. Basic Algorithms
I 13.–19. Heuristic Algorithms

I 13. Heuristics
I 14. Analysis of Heuristics
I 15. Best-first Graph Search
I 16. Greedy Best-first Search, A∗, Weighted A∗

I 17. IDA∗

I 18. Properties of A∗, Part I
I 19. Properties of A∗, Part II

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 3 / 15

17. State-Space Search: IDA∗ IDA∗: Idea

17.1 IDA∗: Idea

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 4 / 15



17. State-Space Search: IDA∗ IDA∗: Idea

IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

I bounded depth-first search with increasing bounds

I instead of depth we bound f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

 IDA∗ (iterative-deepening A∗)

I tree search, unlike the previous best-first search algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 5 / 15

17. State-Space Search: IDA∗ IDA∗: Algorithm

17.2 IDA∗: Algorithm

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 6 / 15

17. State-Space Search: IDA∗ IDA∗: Algorithm

Remarks on the Algorithm (1)

I We describe an IDA∗ implementation
with explicit search nodes.

I More efficient implementations leave search nodes implicit,
as in the depth-first search algorithm in Chapter 12.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 7 / 15

17. State-Space Search: IDA∗ IDA∗: Algorithm

Remarks on the Algorithm (2)

I Our recursive function calls yield two values:
I f limit, the next useful f -bound for the subtree

considered by the call (or none if a solution was found)
I solution, the found solution (or none)

I More efficient implementations store these values
(in instance variables of a class or in a closure)
to save time for passing these values.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 8 / 15



17. State-Space Search: IDA∗ IDA∗: Algorithm

IDA∗: Pseudo-Code (Main Procedure)

IDA∗: Main Procedure
n0 := make root node()
f limit := 0
while f limit 6=∞:

〈f limit, solution〉 := recursive search(n0, f limit)
if solution 6= none:

return solution
return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 9 / 15

17. State-Space Search: IDA∗ IDA∗: Algorithm

IDA∗: Pseudo-Code (Depth-first Search)

function recursive search(n, f limit):

if f (n) > f limit:
return 〈f (n),none〉

if is goal(n.state):
return 〈none, extract path(n)〉

next limit :=∞
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
〈rec limit, solution〉 := recursive search(n′, f limit)
if solution 6= none:

return 〈none, solution〉
next limit := min(next limit, rec limit)

return 〈next limit,none〉

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 10 / 15

17. State-Space Search: IDA∗ IDA∗: Properties

17.3 IDA∗: Properties

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 11 / 15

17. State-Space Search: IDA∗ IDA∗: Properties

IDA∗: Properties

Inherits important properties of A∗ and depth-first search:

I semi-complete if h safe and cost(a) > 0 for all actions a

I optimal if h admissible
I space complexity O(`b), where

I `: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)

I b: branching factor

 proofs?

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 12 / 15



17. State-Space Search: IDA∗ IDA∗: Properties

IDA∗: Discussion

I compared to A∗ potentially considerable overhead
because no duplicates are detected

 exponentially slower in many state spaces
 often combined with partial duplicate elimination

(cycle detection, transposition tables)

I overhead due to iterative increases of f bound
often negligible, but not always
I especially problematic if action costs vary a lot:

then it can easily happen that each new f bound
only reaches a small number of new search nodes

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 13 / 15

17. State-Space Search: IDA∗ Summary

17.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 14 / 15

17. State-Space Search: IDA∗ Summary

Summary

I IDA∗ is a tree search variant of A∗

based on iterative deepening depth-first search

I main advantage: low space complexity

I disadvantage: repeated work can be significant

I most useful when there are few duplicates

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 15 / 15


	IDA*: Idea
	

	IDA*: Algorithm
	

	IDA*: Properties
	

	Summary
	


