Foundations of Artificial Intelligence
17. State-Space Search: IDA*

Malte Helmert

University of Basel

March 25, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 1/15

Foundations of Artificial Intelligence
March 25, 2019 — 17. State-Space Search: IDA*

17.1 IDA™: ldea
17.2 IDA*: Algorithm
17.3 IDA*: Properties

17.4 Summary

State-Space Search: Overview

Chapter overview: state-space search
» 5.—7. Foundations
> 8.—12. Basic Algorithms
> 13.-19. Heuristic Algorithms
13. Heuristics
14. Analysis of Heuristics
15. Best-first Graph Search
16. Greedy Best-first Search, A*, Weighted A"
17. IDA*

18. Properties of A*, Part |
19. Properties of A*, Part Il

VVYyVYVYVYYVYY

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 3 /15

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 2 /15

17. State-Space Search: IDA* IDA™: Idea
17.1 IDA": Idea

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 4 /15




17. State-Space Search: IDA* IDA*: Idea

IDA*

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

» bounded depth-first search with increasing bounds
> instead of depth we bound f

(in this chapter f(n) := g(n) + h(n.state) as in A¥)
~~ IDA* (iterative-deepening A*)

> tree search, unlike the previous best-first search algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 5/ 15

17. State-Space Search: IDA*

17.2 IDA*: Algorithm

M. Helmert (University of Basel)

Foundations of Artificial Intelligence March 25, 2019

IDA*: Algorithm

6 /15

17. State-Space Search: IDA™

Remarks on the Algorithm (1)

IDA™: Algorithm

> We describe an IDA* implementation
with explicit search nodes.

> More efficient implementations leave search nodes implicit,
as in the depth-first search algorithm in Chapter 12.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 7 /15

17. State-Space Search: IDA™

Remarks on the Algorithm (2)

» Our recursive function calls yield two values:
» flimit, the next useful f-bound for the subtree
considered by the call (or none if a solution was found)
» solution, the found solution (or none)
> More efficient implementations store these values
(in instance variables of a class or in a closure)
to save time for passing these values.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019

IDA*: Algorithm

8 /15




17. State-Space Search: IDA*

IDA*: Pseudo-Code (Main Procedure)

IDA*: Main Procedure
no := make_root_node()
f_limit == 0
while f_limit # oc:
(f_limit, solution) := recursive_search(ng, f_limit)
if solution # none:
return solution
return unsolvable

IDA™: Algorithm

17. State-Space Search: IDA*

IDA*: Pseudo-Code (Depth-first Search)

function recursive_search(n, f_limit):
if £(n) > f_limit:
return (f(n), none)
if is_goal(n.state):
return (none, extract_path(n))
next_limit := oo
for each (a,s’) € succ(n.state):
if h(s") < co:
n’ := make_node(n, a, s’)
(rec_limit, solution) := recursive_search(n’, f_limit)
if solution # none:
return (none, solution)
next_limit :== min(next_limit, rec_limit)
return {next_limit, none)

IDA*: Algorithm

M. Helmert (University of Basel) Foundations of Artificial Intelligence

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 9 /15

17. State-Space Search: IDA* IDA™: Properties
17.3 IDA*: Properties

March 25, 2019 11 /15

Foundations of Artificial Intelligence

M. Helmert (University of Basel)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 10 / 15
17. State-Space Search: IDA* IDA™: Properties
IDA*: Properties
Inherits important properties of A* and depth-first search:
» semi-complete if h safe and cost(a) > 0 for all actions a
» optimal if h admissible
> space complexity O(¢b), where
» /. length of longest generated path
(for unit cost problems: bounded by optimal solution cost)
> b: branching factor
~~ proofs?
March 25, 2019 12 / 15




17. State-Space Search: IDA* IDA™: Properties

IDA*: Discussion

> compared to A* potentially considerable overhead
because no duplicates are detected
~~ exponentially slower in many state spaces
~ often combined with partial duplicate elimination
(cycle detection, transposition tables)

» overhead due to iterative increases of f bound
often negligible, but not always
> especially problematic if action costs vary a lot:
then it can easily happen that each new f bound
only reaches a small number of new search nodes

17. State-Space Search: IDA*

17.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence

March 25, 2019

Summary

14 /

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 13 /15
17. State-Space Search: IDA™ Summary
Summary

> IDA" is a tree search variant of A*
based on iterative deepening depth-first search

» main advantage: low space complexity
> disadvantage: repeated work can be significant

» most useful when there are few duplicates

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 25, 2019 15 / 15




	IDA*: Idea
	

	IDA*: Algorithm
	

	IDA*: Properties
	

	Summary
	


