Foundations of Artificial Intelligence
15. State-Space Search: Best-first Graph Search

Malte Helmert

University of Basel

March 20, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 1/20

Foundations of Artificial Intelligence
March 20, 2019 — 15. State-Space Search: Best-first Graph Search
15.1 Introduction
15.2 Best-first Search
15.3 Algorithm Details
15.4 Reopening

15.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019

State-Space Search: Overview

Chapter overview: state-space search
» 5.—7. Foundations
> 8.—12. Basic Algorithms

> 13.-19.
13.
14.
15.
16.
17.
18.
19.

VVYyVYVYVYYVYY

Heuristic Algorithms

Heuristics

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A*, Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part Il

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 3/20

15. State-Space Search: Best-first Graph Search

15.1 Introduction

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019

Introduction

4 /20




15. State-Space Search: Best-first Graph Search Introduction

Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions

to (partially or fully) determine the order of node expansion.
German: heuristische Suchalgorithmen

» this chapter: short introduction

P next chapters: more thorough analysis

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 5/ 20

15. State-Space Search: Best-first Graph Search Best-first Search

15.2 Best-first Search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 6 /20

15. State-Space Search: Best-first Graph Search Best-first Search

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

» decision which node is most promising uses heuristics. . .

P> ... but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm

that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f(n) value.

German: Bestensuche, Bewertungsfunktion

» implementation essentially like uniform cost search

» different choices of f ~~ different search algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 7/

20

15. State-Space Search: Best-first Graph Search Best-first Search

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

» f(n) = h(n.state): greedy best-first search
~> only the heuristic counts

» f(n) = g(n) + h(n.state): A*
~~ combination of path cost and heuristic

» f(n) = g(n)+ w - h(n.state): weighted A*
w € R{ is a parameter
~ interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*
~~ properties: next chapters

What do we obtain with f(n) := g(n)?

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 8 /20




15. State-Space Search: Best-first Graph Search Best-first Search

Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

» now: graph search (i.e., with duplicate elimination),
which is the more common case

» Chapter 17: a tree search variant

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 9 /20

15. State-Space Search: Best-first Graph Search Algorithm Details

15.3 Algorithm Details

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 10 / 20

15. State-Space Search: Best-first Graph Search Algorithm Details

Reminder: Uniform Cost Search

reminder: uniform cost search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 11 /20

15. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search without Reopening (1st Attempt)

best-first search without reopening (1st attempt)

Best-first Search without Reopening (1st Attempt)

open := new MinHeap ordered by
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 12 / 20




15. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

> discard states considered unsolvable by the heuristic

~~ saves memory in open

» if multiple search nodes have identical f values,

use h to break ties (preferring low h)

> not always a good idea, but often
> obviously unnecessary if f = h (greedy best-first search)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 13 /20

15. State-Space Search: Best-first Graph Search

Best-first Search: Properties

Algorithm Details

properties:
» complete if h is safe (Why?)

» optimality depends on f ~~ next chapters

M. Helmert (University of Basel) Foundations of Artificial Intelligence

15. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search without Reopening (Final Version)

Best-first Search without Reopening
open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s") < oo:
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence

March 20, 2019 14 / 20

March 20, 2019 15 /20

15. State-Space Search: Best-first Graph Search Reopening

15.4 Reopening

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 16 / 20




15. State-Space Search: Best-first Graph Search Reopening

Reopening

» reminder: uniform cost search expands nodes
in order of increasing g values

~> guarantees that cheapest path to state of a node
has been found when the node is expanded

» with arbitrary evaluation functions f in best-first search
this does not hold in general

~> in order to find solutions of low cost,
we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 17 / 20

15. State-Space Search: Best-first Graph Search Reopening

Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
distances := new HashTable
while not open.is_empty():
n := open.pop-min()
if distances.lookup(n.state) = none or g(n) < distances|n.state]:
distances|n.state] := g(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oc:
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable

~ distances controls reopening and replaces closed

15. State-Space Search: Best-first Graph Search Summary

15.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 19 / 20

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 18 / 20
15. State-Space Search: Best-first Graph Search Summary
Summary

> best-first search: expand node with minimal value
of evaluation function f

» f = h: greedy best-first search
> f=g+h A"
> f =g+ w-hwith parameter w € R} : weighted A*

» here: best-first search as a graph search

> reopening: expand duplicates with lower path costs
to find cheaper solutions

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 20 / 20




	Introduction
	

	Best-first Search
	

	Algorithm Details
	

	Reopening
	

	Summary
	


