
Foundations of Artificial Intelligence
15. State-Space Search: Best-first Graph Search

Malte Helmert

University of Basel

March 20, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 1 / 20

Foundations of Artificial Intelligence
March 20, 2019 — 15. State-Space Search: Best-first Graph Search

15.1 Introduction

15.2 Best-first Search

15.3 Algorithm Details

15.4 Reopening

15.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 2 / 20

State-Space Search: Overview

Chapter overview: state-space search

I 5.–7. Foundations

I 8.–12. Basic Algorithms
I 13.–19. Heuristic Algorithms

I 13. Heuristics
I 14. Analysis of Heuristics
I 15. Best-first Graph Search
I 16. Greedy Best-first Search, A∗, Weighted A∗

I 17. IDA∗

I 18. Properties of A∗, Part I
I 19. Properties of A∗, Part II

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 3 / 20

15. State-Space Search: Best-first Graph Search Introduction

15.1 Introduction

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 4 / 20

15. State-Space Search: Best-first Graph Search Introduction

Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

I this chapter: short introduction

I next chapters: more thorough analysis

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 5 / 20

15. State-Space Search: Best-first Graph Search Best-first Search

15.2 Best-first Search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 6 / 20

15. State-Space Search: Best-first Graph Search Best-first Search

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

I decision which node is most promising uses heuristics. . .

I . . . but not necessarily exclusively.

Best-first Search
A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

I implementation essentially like uniform cost search

I different choices of f different search algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 7 / 20

15. State-Space Search: Best-first Graph Search Best-first Search

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

I f (n) = h(n.state): greedy best-first search
 only the heuristic counts

I f (n) = g(n) + h(n.state): A∗

 combination of path cost and heuristic

I f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

 interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

 properties: next chapters

What do we obtain with f (n) := g(n)?

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 8 / 20

15. State-Space Search: Best-first Graph Search Best-first Search

Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

I now: graph search (i.e., with duplicate elimination),
which is the more common case

I Chapter 17: a tree search variant

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 9 / 20

15. State-Space Search: Best-first Graph Search Algorithm Details

15.3 Algorithm Details

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 10 / 20

15. State-Space Search: Best-first Graph Search Algorithm Details

Reminder: Uniform Cost Search

reminder: uniform cost search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 11 / 20

15. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search without Reopening (1st Attempt)

best-first search without reopening (1st attempt)

Best-first Search without Reopening (1st Attempt)

open := new MinHeap ordered by f
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 12 / 20

15. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

I discard states considered unsolvable by the heuristic
 saves memory in open

I if multiple search nodes have identical f values,
use h to break ties (preferring low h)

I not always a good idea, but often
I obviously unnecessary if f = h (greedy best-first search)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 13 / 20

15. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 14 / 20

15. State-Space Search: Best-first Graph Search Algorithm Details

Best-first Search: Properties

properties:

I complete if h is safe (Why?)

I optimality depends on f next chapters

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 15 / 20

15. State-Space Search: Best-first Graph Search Reopening

15.4 Reopening

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 16 / 20

15. State-Space Search: Best-first Graph Search Reopening

Reopening

I reminder: uniform cost search expands nodes
in order of increasing g values

 guarantees that cheapest path to state of a node
has been found when the node is expanded

I with arbitrary evaluation functions f in best-first search
this does not hold in general

 in order to find solutions of low cost,
we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 17 / 20

15. State-Space Search: Best-first Graph Search Reopening

Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
distances := new HashTable
while not open.is empty():

n := open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

 distances controls reopening and replaces closed

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 18 / 20

15. State-Space Search: Best-first Graph Search Summary

15.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 19 / 20

15. State-Space Search: Best-first Graph Search Summary

Summary

I best-first search: expand node with minimal value
of evaluation function f
I f = h: greedy best-first search
I f = g + h: A∗

I f = g + w · h with parameter w ∈ R+
0 : weighted A∗

I here: best-first search as a graph search

I reopening: expand duplicates with lower path costs
to find cheaper solutions

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 20, 2019 20 / 20

	Introduction
	

	Best-first Search
	

	Algorithm Details
	

	Reopening
	

	Summary
	

