Foundations of Artificial Intelligence
11. State-Space Search: Uniform Cost Search

Malte Helmert

University of Basel

March 6, 2019



State-Space Search: Overview

Chapter overview: state-space search
@ 5.-7. Foundations

e 8.—12. Basic Algorithms

8. Data Structures for Search Algorithms

9. Tree Search and Graph Search

10. Breadth-first Search

11. Uniform Cost Search

12. Depth-first Search and Iterative Deepening

@ 13.-19. Heuristic Algorithms



Intra

oduc

tion

Introduction




Introduction
oe

Uniform Cost Search

@ breadth-first search optimal if all action costs equal

@ otherwise no optimality guarantee ~» example:

Bucharest



Introduction
oe

Uniform Cost Search

@ breadth-first search optimal if all action costs equal

@ otherwise no optimality guarantee ~» example:

Bucharest

remedy: uniform cost search

@ always expand a node with minimal path cost
(n.path_cost a.k.a. g(n))

@ implementation: priority queue (min-heap) for open list



Algorithm



Introduction Algorithm

(o] lelele]

Reminder: Generic Graph Search Algorithm

reminder from Chapter O:

Generic Graph Search

Summar

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n := open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable




Algorithm
[e]eY Yolo)

Uniform Cost Search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable




Algorithm
000®0

Uniform Cost Search: Discussion

Adapting generic graph search to uniform cost search:

@ here, early goal tests/early updates of the closed list
not a good idea. (Why not?)

@ as in BFS-Graph, a set is sufficient for the closed list

@ a tree search variant is possible, but rare:
has the same disadvantages as BFS-Tree
and in general not even semi-complete (\Why not?)

Remarks:
@ identical to Dijkstra’s algorithm for shortest paths
e for both: variants with/without delayed duplicate elimination



Algorithm
[elelelol ]

Uniform Cost Search: Improvements

possible improvements:

@ if action costs are small integers,
bucket heaps often more efficient

@ additional early duplicate tests for generated nodes
can reduce memory requirements

e can be beneficial or detrimental for runtime
e must be careful to keep shorter path to duplicate state



Properties



Properties
oeo

Completeness and Optimality

properties of uniform cost search:
@ uniform cost search is complete (Why?)

@ uniform cost search is optimal (Why?)



Properties
ooe

Time and Space Complexity

properties of uniform cost search:

@ Time complexity depends on distribution of action costs
(no simple and accurate bounds).
o Let € := minyea cost(a) and consider the case € > 0.
Let c* be the optimal solution cost.
Let b be the branching factor and consider the case b > 2.
Then the time complexity is at most O(bl</¢1+1). (Why?)
often a very weak upper bound

@ space complexity = time complexity



Summary



Summary
oce

Summary

uniform cost search: expand nodes in order of ascending path costs

@ usually as a graph search
@ then corresponds to Dijkstra’s algorithm

@ complete and optimal



	Introduction
	

	Algorithm
	

	Properties
	

	Summary
	


