
Foundations of Artificial Intelligence
11. State-Space Search: Uniform Cost Search

Malte Helmert

University of Basel

March 6, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 1 / 15

Foundations of Artificial Intelligence
March 6, 2019 — 11. State-Space Search: Uniform Cost Search

11.1 Introduction

11.2 Algorithm

11.3 Properties

11.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 2 / 15

State-Space Search: Overview

Chapter overview: state-space search

I 5.–7. Foundations
I 8.–12. Basic Algorithms

I 8. Data Structures for Search Algorithms
I 9. Tree Search and Graph Search
I 10. Breadth-first Search
I 11. Uniform Cost Search
I 12. Depth-first Search and Iterative Deepening

I 13.–19. Heuristic Algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 3 / 15

11. State-Space Search: Uniform Cost Search Introduction

11.1 Introduction

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 4 / 15

11. State-Space Search: Uniform Cost Search Introduction

Uniform Cost Search

I breadth-first search optimal if all action costs equal

I otherwise no optimality guarantee example:

remedy: uniform cost search

I always expand a node with minimal path cost
(n.path cost a.k.a. g(n))

I implementation: priority queue (min-heap) for open list

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 5 / 15

11. State-Space Search: Uniform Cost Search Algorithm

11.2 Algorithm

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 6 / 15

11. State-Space Search: Uniform Cost Search Algorithm

Reminder: Generic Graph Search Algorithm

reminder from Chapter 9:

Generic Graph Search

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 7 / 15

11. State-Space Search: Uniform Cost Search Algorithm

Uniform Cost Search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 8 / 15

11. State-Space Search: Uniform Cost Search Algorithm

Uniform Cost Search: Discussion

Adapting generic graph search to uniform cost search:

I here, early goal tests/early updates of the closed list
not a good idea. (Why not?)

I as in BFS-Graph, a set is sufficient for the closed list

I a tree search variant is possible, but rare:
has the same disadvantages as BFS-Tree
and in general not even semi-complete (Why not?)

Remarks:

I identical to Dijkstra’s algorithm for shortest paths

I for both: variants with/without delayed duplicate elimination

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 9 / 15

11. State-Space Search: Uniform Cost Search Algorithm

Uniform Cost Search: Improvements

possible improvements:

I if action costs are small integers,
bucket heaps often more efficient

I additional early duplicate tests for generated nodes
can reduce memory requirements
I can be beneficial or detrimental for runtime
I must be careful to keep shorter path to duplicate state

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 10 / 15

11. State-Space Search: Uniform Cost Search Properties

11.3 Properties

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 11 / 15

11. State-Space Search: Uniform Cost Search Properties

Completeness and Optimality

properties of uniform cost search:

I uniform cost search is complete (Why?)

I uniform cost search is optimal (Why?)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 12 / 15

11. State-Space Search: Uniform Cost Search Properties

Time and Space Complexity

properties of uniform cost search:

I Time complexity depends on distribution of action costs
(no simple and accurate bounds).
I Let ε := mina∈A cost(a) and consider the case ε > 0.
I Let c∗ be the optimal solution cost.
I Let b be the branching factor and consider the case b ≥ 2.
I Then the time complexity is at most O(bbc

∗/εc+1). (Why?)
I often a very weak upper bound

I space complexity = time complexity

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 13 / 15

11. State-Space Search: Uniform Cost Search Summary

11.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 14 / 15

11. State-Space Search: Uniform Cost Search Summary

Summary

uniform cost search: expand nodes in order of ascending path costs

I usually as a graph search

I then corresponds to Dijkstra’s algorithm

I complete and optimal

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 6, 2019 15 / 15

	Introduction
	

	Algorithm
	

	Properties
	

	Summary
	

