Foundations of Artificial Intelligence
10. State-Space Search: Breadth-first Search

Malte Helmert

University of Basel

March 6, 2019



State-Space Search: Overview

Chapter overview: state-space search

@ 5.-7. Foundations
e 8.—12. Basic Algorithms
e 8. Data Structures for Search Algorithms
o 9. Tree Search and Graph Search
e 10. Breadth-first Search
e 11. Uniform Cost Search
e 12. Depth-first Search and Iterative Deepening

@ 13.-19. Heuristic Algorithms



Blind Search



Blind Search

oeo

Blind Search

In Chapters 10-12 we consider blind search algorithms:

Blind Search Algorithms

Blind search algorithms use no information
about state spaces apart from the black box interface.

They are also called uninformed search algorithms.

contrast: heuristic search algorithms (Chapters 13-19)



Blind Search
ooe

Blind Search Algorithms: Examples

examples of blind search algorithms:
@ breadth-first search
@ uniform cost search
@ depth-first search
@ depth-limited search

@ iterative deepening search




Blind Search
ooe

Blind Search Algorithms: Examples

examples of blind search algorithms:
@ breadth-first search (~ this chapter)
@ uniform cost search
@ depth-first search
@ depth-limited search

@ iterative deepening search




Blind Search
ooe

Blind Search Algorithms: Examples

examples of blind search algorithms:
@ breadth-first search (~ this chapter)
@ uniform cost search (~~ Chapter 11)
o depth-first search (~~ Chapter 12)
@ depth-limited search (~ Chapter 12)

o iterative deepening search (~~ Chapter 12)



Breadth-first Search: Introduction



BFS: Introduction
oeo

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

®

open: A



BFS: Introduction
oeo

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: B, C



BFS: Introduction
oeo

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: C, D, E



BFS: Introduction
oeo

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: D, E, F, G, H



BFS: Introduction
oeo

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

open: E, F, G, H, I, J



BFS: Introduction
oeo

Breadth-first Search

Breadth-first search expands nodes in order of generation (FIFO).
~> e.g., open list as linked list or deque

@ searches state space layer by layer
@ always finds shallowest goal state first



BFS: Introduction
ocoe

Breadth-first Search: Tree Search or Graph Search?

Breadth-first search can be performed

e without duplicate elimination (as a tree search)
~» BFS-Tree

@ or with duplicate elimination (as a graph search)
~» BFS-Graph

(BFS = breadth-first search).

~~ We consider both variants.



BFS-Tree



BFS-Tree

(o] Jelelelele}

Reminder: Generic Tree Search Algorithm

reminder from Chapter 9:

Generic Tree Search

open := new OpenlList
open.insert(make_root_node())
while not open.is_empty():
n := open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable




BFS-Tree
00®0000

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS-Tree (1st Attempt)

open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
open.push_back(n’)
return unsolvable




BFS-Tree
00®0000

BFS-Tree (1st Attempt)

breadth-first search without duplicate elimination (1st attempt):

BFS- = (1st Attempt)

open.push_back(m3
while not open.is_empty
n := open.pop_front()
if is_goal(n.state):
return extract_pi
for each (a,s’)




BFS-Tree
000000

BFS-Tree (1st Attempt): Discussion

This is almost a usable algorithm, but it wastes some effort:

@ In a breadth-first search, the first generated goal node
is always the first expanded goal node. (Why?)

@ Hence it is more efficient to already perform the goal test
upon generating a node (rather than upon expanding it).

~~ How much effort does this save?



BFS-Tree
000000

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BFS-Tree (2nd Attempt)

open := new Deque
open.push_back(make_root_node())
while not open.is_empty():

n := open.pop_front()

for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable )




BFS-Tree
000000

BFS-Tree (2nd Attempt)

breadth-first search without duplicate elimination (2nd attempt):

BF. T-ee (2nd Attempt)

for each (a,s’)
n' := make_ng
if is_goa

fhsolvable




BFS-Tree
00000e0

BFS-Tree (2nd Attempt): Discussion

Where is the bug?



BFS-Tree

000000e

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

BFS-Tree

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable




BFS-Tree

000000e

BFS-Tree (Final Version)

breadth-first search without duplicate elimination (final version):

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_front()
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
if is_goal(s’):
return extract_path(n’)
open.push_back(n’)
return unsolvable




BFS-Graph



BFS-Graph

lo] Jele}

Reminder: Generic Graph Search Algorithm

reminder from Chapter O:

Generic Graph Search

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n := open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable




BFS-Graph
coeo

Adapting Generic Graph Search to Breadth-First Search

Adapting the generic algorithm to breadth-first search:

@ similar adaptations to BFS-Tree
(deque as open list, early goal test)

@ as closed list does not need to manage node information,
a set data structure suffices

o for the same reasons why early goal tests are a good idea,
we should perform duplicate tests against the closed list
and updates of the closed lists as early as possible



BFS: Introduction 3FS BFS-Graph
o oooe

BFS-Graph (Breadth-First Search with Duplicate Elim.)

if is_goal(init()):
return ()
open := new Deque
open.push_back(make_root_node())
closed := new HashSet
closed.insert(init())
while not open.is_empty():
n := open.pop_front()
for each (a, s’) € succ(n.state):
n’ := make_node(n, a, s’)
if is_goal(s’):
return extract_path(n’)
if s’ ¢ closed.:
closed.insert(s’)
open.push_back(n’)
return unsolvable




Properties of Breadth-first Search



BFS Properties
©0®000

Properties of Breadth-first Search

Properties of Breadth-first Search:
@ BFS-Tree is semi-complete, but not complete. (\Why?)
e BFS-Graph is complete. (Why?)

e BFS (both variants) is optimal
if all actions have the same cost (Why?),
but not in general (Why not?).

@ complexity: next slides



BFS Properties
00®00

Breadth-first Search: Complexity

The following result applies to both BFS variants:

Theorem (time complexity of breadth-first search)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b > 2.

Then the time complexity of breadth-first search is

1+b+ b+ b+ 4 b= 0(b7)

Reminder: we measure time complexity in generated nodes.

It follows that the space complexity of both BFS variants
also is O(b9) (if b >2). (Why?)



BFS Properties
0000

Breadth-first Search: Example of Complexity

example: b = 10; 100000 nodes/second; 32 bytes/node

d nodes time memory

5 111111 1s 3.4MiB

9 10° 3h 33GiB

13 103 3.5years 323TiB



BFS Properties
ooooe

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?



BFS Properties
ooooe

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates



BFS Properties
ooooe

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
@ simpler

o less overhead (time/space) if there are few duplicates



BFS Properties
ooooe

BFS-Tree or BFS-Graph?

What is better, BFS-Tree or BFS-Graph?

advantages of BFS-Graph:
@ complete

e much (!) more efficient if there are many duplicates

advantages of BFS-Tree:
@ simpler

o less overhead (time/space) if there are few duplicates

BFS-Graph is usually preferable, unless we know that there is
a negligible number of duplicates in the given state space.




Summary



Summary
oce

Summary

@ blind search algorithm: use no information
except black box interface of state space

o breadth-first search: expand nodes in order of generation
e search state space layer by layer
@ can be tree search or graph search
o complexity O(b9) with branching factor b,

minimal solution length d (if b > 2)

e complete as a graph search; semi-complete as a tree search
e optimal with uniform action costs



	Blind Search
	

	Breadth-first Search: Introduction
	

	BFS-Tree
	

	BFS-Graph
	

	Properties of Breadth-first Search
	

	Summary
	


