Foundations of Artificial Intelligence
9. State-Space Search: Tree Search and Graph Search

Malte Helmert

University of Basel

March 4, 2019



State-Space Search: Overview

Chapter overview: state-space search

@ 5—7. Foundations
e 8.—12. Basic Algorithms
e 8. Data Structures for Search Algorithms
e 9. Tree Search and Graph Search
e 10. Breadth-first Search
e 11. Uniform Cost Search
e 12. Depth-first Search and Iterative Deepening

@ 13.-19. Heuristic Algorithms



Intra

oduc

tion

Introduction




Introduction
oe

Search Algorithms

General Search Algorithm
@ Starting with initial state,
@ repeatedly expand a state by generating its successors.
@ Stop when a goal state is expanded

@ or all reachable states have been considered.




Introduction
oe

Search Algorithms

General Search Algorithm

@ Starting with initial state,
@ repeatedly expand a state by generating its successors.
@ Stop when a goal state is expanded

@ or all reachable states have been considered.

In this chapter, we study two essential classes of search algorithms:
@ tree search and
@ graph search

(Each class consists of a large number of concrete algorithms.)

German: expandieren, erzeugen, Baumsuche, Graphensuche



Tree Search



Tree Search
o®00

Tree Search

@ possible paths to be explored organized in a tree (search tree)
@ search nodes correspond 1:1 to paths from initial state

@ duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

@ search tree can have unbounded depth

German: Suchbaum, Duplikate, Transpositionen



Tree Search
coeo

Generic Tree Search Algorithm

Generic Tree Search Algorithm

open := new OpenlList
open.insert(make_root_node())
while not open.is_empty():
n := open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s")
open.insert(n")
return unsolvable




Tree Search
ocooe

Generic Tree Search Algorithm: Discussion

discussion:
@ generic template for tree search algorithms

~~ for concrete algorithm, we must (at least) decide
how to implement the open list

@ concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons



Graph Search



Graph Search
©0®000

Reminder: Tree Search

reminder:
@ possible paths to be explored organized in a tree (search tree)
@ search nodes correspond 1:1 to paths from initial state

@ duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

@ search tree can have unbounded depth




Graph Search
00®00

Graph Search

Graph Search

differences to tree search:

@ recognize duplicates: when a state is reached
on multiple paths, only keep one search node

@ search nodes correspond 1:1 to reachable states

@ search tree bounded, as number of states is finite

remarks:
@ some graph search algorithms do not immediately eliminate
all duplicates (~ later)

@ one possible reason: find optimal solutions when a path
to state s found later is cheaper than one found earlier



Graph Search
0000

Generic Graph Search Algorithm

Generic Graph Search Algorithm

open := new OpenlList
open.insert(make_root_node())
closed := new ClosedList
while not open.is_empty():
n := open.pop()
if closed.lookup(n.state) = none:
closed.insert(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable




Graph Search
ooooe

Generic Graph Search Algorithm: Discussion

discussion:
@ same comments as for generic tree search apply
@ in “pure” algorithm, closed list does not actually
need to store the search nodes
e sufficient to implement closed as set of states
e advanced algorithms often need access to the nodes,
hence we show this more general version here
@ some variants perform goal and duplicate tests elsewhere
(earlier) ~ following chapters



Evaluating Search Algorithms

@®00000

Evaluating Search Algorithms



Evaluating Search Algorithms
0®0000

Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete

German: Vollstandigkeit, semi-vollstandig, vollstandig



Evaluating Search Algorithms
00®000

Criteria: Optimality

four criteria for evaluating search algorithms:

Are the solutions returned by the algorithm always optimal? I

German: Optimalitat




Evaluating Search Algorithms
000800

Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?
@ usually worst case analysis

@ usually measured in generated nodes

often a function of the following quantities:

@ b: (branching factor) of state space
(max. number of successors of a state)

@ d: search depth
(length of longest path in generated search tree)

German: Zeitaufwand, Verzweigungsgrad, Suchtiefe



Evaluating Search Algorithms
0000®0

Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?
@ usually worst case analysis

@ usually measured in (concurrently) stored nodes

often a function of the following quantities:

@ b: (branching factor) of state space
(max. number of successors of a state)

@ d: search depth
(length of longest path in generated search tree)

German: Speicheraufwand



Evaluating Search Algorithms
00000e

Analyzing the Generic Search Algorithms

Generic Tree Search Algorithm
@ Is it complete? Is it semi-complete?
@ Is it optimal?
@ What is its worst-case time complexity?

@ What is its worst-case space complexity?

Generic Graph Search Algorithm
@ Is it complete? Is it semi-complete?
o Is it optimal?
@ What is its worst-case time complexity?

@ What is its worst-case space complexity?



Summary



Summary
oeo

Summary (1)

tree search:

@ search nodes correspond 1:1 to paths from initial state

graph search:
@ search nodes correspond 1:1 to reachable states

~> duplicate elimination

generic methods with many possible variants



Summary
ooe

Summary (2)

evaluating search algorithms:
@ completeness and semi-completeness
@ optimality

@ time complexity and space complexity



	Introduction
	

	Tree Search
	

	Graph Search
	

	Evaluating Search Algorithms
	

	Summary
	


