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State-Space Search: Overview

Chapter overview: state-space search

I 5.–7. Foundations
I 8.–12. Basic Algorithms

I 8. Data Structures for Search Algorithms
I 9. Tree Search and Graph Search
I 10. Breadth-first Search
I 11. Uniform Cost Search
I 12. Depth-first Search and Iterative Deepening

I 13.–19. Heuristic Algorithms
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9.1 Introduction
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Search Algorithms

General Search Algorithm
I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

In this chapter, we study two essential classes of search algorithms:

I tree search and

I graph search

(Each class consists of a large number of concrete algorithms.)

German: expandieren, erzeugen, Baumsuche, Graphensuche
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9.2 Tree Search
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Tree Search

Tree Search
I possible paths to be explored organized in a tree (search tree)

I search nodes correspond 1:1 to paths from initial state

I duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

I search tree can have unbounded depth

German: Suchbaum, Duplikate, Transpositionen
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Generic Tree Search Algorithm

Generic Tree Search Algorithm
open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 8 / 23



9. State-Space Search: Tree Search and Graph Search Tree Search

Generic Tree Search Algorithm: Discussion

discussion:

I generic template for tree search algorithms

 for concrete algorithm, we must (at least) decide
how to implement the open list

I concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons
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9.3 Graph Search
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9. State-Space Search: Tree Search and Graph Search Graph Search

Reminder: Tree Search

reminder:

Tree Search
I possible paths to be explored organized in a tree (search tree)

I search nodes correspond 1:1 to paths from initial state

I duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

I search tree can have unbounded depth
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Graph Search

Graph Search

differences to tree search:

I recognize duplicates: when a state is reached
on multiple paths, only keep one search node

I search nodes correspond 1:1 to reachable states

I search tree bounded, as number of states is finite

remarks:

I some graph search algorithms do not immediately eliminate
all duplicates ( later)

I one possible reason: find optimal solutions when a path
to state s found later is cheaper than one found earlier
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Generic Graph Search Algorithm

Generic Graph Search Algorithm
open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Generic Graph Search Algorithm: Discussion

discussion:

I same comments as for generic tree search apply

I in “pure” algorithm, closed list does not actually
need to store the search nodes
I sufficient to implement closed as set of states
I advanced algorithms often need access to the nodes,

hence we show this more general version here

I some variants perform goal and duplicate tests elsewhere
(earlier)  following chapters

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 14 / 23

9. State-Space Search: Tree Search and Graph Search Evaluating Search Algorithms

9.4 Evaluating Search Algorithms
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Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete

German: Vollständigkeit, semi-vollständig, vollständig
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Criteria: Optimality

four criteria for evaluating search algorithms:

Optimality

Are the solutions returned by the algorithm always optimal?

German: Optimalität
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Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?

I usually worst case analysis

I usually measured in generated nodes

often a function of the following quantities:

I b: (branching factor) of state space
(max. number of successors of a state)

I d : search depth
(length of longest path in generated search tree)

German: Zeitaufwand, Verzweigungsgrad, Suchtiefe
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Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?

I usually worst case analysis

I usually measured in (concurrently) stored nodes

often a function of the following quantities:

I b: (branching factor) of state space
(max. number of successors of a state)

I d : search depth
(length of longest path in generated search tree)

German: Speicheraufwand
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Analyzing the Generic Search Algorithms

Generic Tree Search Algorithm

I Is it complete? Is it semi-complete?

I Is it optimal?

I What is its worst-case time complexity?

I What is its worst-case space complexity?

Generic Graph Search Algorithm

I Is it complete? Is it semi-complete?

I Is it optimal?

I What is its worst-case time complexity?

I What is its worst-case space complexity?
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9.5 Summary
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Summary (1)

tree search:

I search nodes correspond 1:1 to paths from initial state

graph search:

I search nodes correspond 1:1 to reachable states

 duplicate elimination

generic methods with many possible variants
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Summary (2)

evaluating search algorithms:

I completeness and semi-completeness

I optimality

I time complexity and space complexity
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