
Foundations of Artificial Intelligence
9. State-Space Search: Tree Search and Graph Search

Malte Helmert

University of Basel

March 4, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 1 / 23

Foundations of Artificial Intelligence
March 4, 2019 — 9. State-Space Search: Tree Search and Graph Search

9.1 Introduction

9.2 Tree Search

9.3 Graph Search

9.4 Evaluating Search Algorithms

9.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 2 / 23

State-Space Search: Overview

Chapter overview: state-space search

I 5.–7. Foundations
I 8.–12. Basic Algorithms

I 8. Data Structures for Search Algorithms
I 9. Tree Search and Graph Search
I 10. Breadth-first Search
I 11. Uniform Cost Search
I 12. Depth-first Search and Iterative Deepening

I 13.–19. Heuristic Algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 3 / 23

9. State-Space Search: Tree Search and Graph Search Introduction

9.1 Introduction

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 4 / 23

9. State-Space Search: Tree Search and Graph Search Introduction

Search Algorithms

General Search Algorithm
I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

In this chapter, we study two essential classes of search algorithms:

I tree search and

I graph search

(Each class consists of a large number of concrete algorithms.)

German: expandieren, erzeugen, Baumsuche, Graphensuche

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 5 / 23

9. State-Space Search: Tree Search and Graph Search Tree Search

9.2 Tree Search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 6 / 23

9. State-Space Search: Tree Search and Graph Search Tree Search

Tree Search

Tree Search
I possible paths to be explored organized in a tree (search tree)

I search nodes correspond 1:1 to paths from initial state

I duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

I search tree can have unbounded depth

German: Suchbaum, Duplikate, Transpositionen

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 7 / 23

9. State-Space Search: Tree Search and Graph Search Tree Search

Generic Tree Search Algorithm

Generic Tree Search Algorithm
open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 8 / 23

9. State-Space Search: Tree Search and Graph Search Tree Search

Generic Tree Search Algorithm: Discussion

discussion:

I generic template for tree search algorithms

 for concrete algorithm, we must (at least) decide
how to implement the open list

I concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 9 / 23

9. State-Space Search: Tree Search and Graph Search Graph Search

9.3 Graph Search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 10 / 23

9. State-Space Search: Tree Search and Graph Search Graph Search

Reminder: Tree Search

reminder:

Tree Search
I possible paths to be explored organized in a tree (search tree)

I search nodes correspond 1:1 to paths from initial state

I duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

I search tree can have unbounded depth

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 11 / 23

9. State-Space Search: Tree Search and Graph Search Graph Search

Graph Search

Graph Search

differences to tree search:

I recognize duplicates: when a state is reached
on multiple paths, only keep one search node

I search nodes correspond 1:1 to reachable states

I search tree bounded, as number of states is finite

remarks:

I some graph search algorithms do not immediately eliminate
all duplicates (later)

I one possible reason: find optimal solutions when a path
to state s found later is cheaper than one found earlier

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 12 / 23

9. State-Space Search: Tree Search and Graph Search Graph Search

Generic Graph Search Algorithm

Generic Graph Search Algorithm
open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 13 / 23

9. State-Space Search: Tree Search and Graph Search Graph Search

Generic Graph Search Algorithm: Discussion

discussion:

I same comments as for generic tree search apply

I in “pure” algorithm, closed list does not actually
need to store the search nodes
I sufficient to implement closed as set of states
I advanced algorithms often need access to the nodes,

hence we show this more general version here

I some variants perform goal and duplicate tests elsewhere
(earlier) following chapters

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 14 / 23

9. State-Space Search: Tree Search and Graph Search Evaluating Search Algorithms

9.4 Evaluating Search Algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 15 / 23

9. State-Space Search: Tree Search and Graph Search Evaluating Search Algorithms

Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete

German: Vollständigkeit, semi-vollständig, vollständig

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 16 / 23

9. State-Space Search: Tree Search and Graph Search Evaluating Search Algorithms

Criteria: Optimality

four criteria for evaluating search algorithms:

Optimality

Are the solutions returned by the algorithm always optimal?

German: Optimalität

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 17 / 23

9. State-Space Search: Tree Search and Graph Search Evaluating Search Algorithms

Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?

I usually worst case analysis

I usually measured in generated nodes

often a function of the following quantities:

I b: (branching factor) of state space
(max. number of successors of a state)

I d : search depth
(length of longest path in generated search tree)

German: Zeitaufwand, Verzweigungsgrad, Suchtiefe

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 18 / 23

9. State-Space Search: Tree Search and Graph Search Evaluating Search Algorithms

Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?

I usually worst case analysis

I usually measured in (concurrently) stored nodes

often a function of the following quantities:

I b: (branching factor) of state space
(max. number of successors of a state)

I d : search depth
(length of longest path in generated search tree)

German: Speicheraufwand

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 19 / 23

9. State-Space Search: Tree Search and Graph Search Evaluating Search Algorithms

Analyzing the Generic Search Algorithms

Generic Tree Search Algorithm

I Is it complete? Is it semi-complete?

I Is it optimal?

I What is its worst-case time complexity?

I What is its worst-case space complexity?

Generic Graph Search Algorithm

I Is it complete? Is it semi-complete?

I Is it optimal?

I What is its worst-case time complexity?

I What is its worst-case space complexity?

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 20 / 23

9. State-Space Search: Tree Search and Graph Search Summary

9.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 21 / 23

9. State-Space Search: Tree Search and Graph Search Summary

Summary (1)

tree search:

I search nodes correspond 1:1 to paths from initial state

graph search:

I search nodes correspond 1:1 to reachable states

 duplicate elimination

generic methods with many possible variants

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 22 / 23

9. State-Space Search: Tree Search and Graph Search Summary

Summary (2)

evaluating search algorithms:

I completeness and semi-completeness

I optimality

I time complexity and space complexity

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 23 / 23

	Introduction
	

	Tree Search
	

	Graph Search
	

	Evaluating Search Algorithms
	

	Summary
	

