
Foundations of Artificial Intelligence
8. State-Space Search: Data Structures for Search Algorithms

Malte Helmert

University of Basel

March 4, 2019

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 1 / 32

Foundations of Artificial Intelligence
March 4, 2019 — 8. State-Space Search: Data Structures for Search Algorithms

8.1 Introduction

8.2 Search Nodes

8.3 Open Lists

8.4 Closed Lists

8.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 2 / 32

State-Space Search: Overview

Chapter overview: state-space search

I 5.–7. Foundations
I 8.–12. Basic Algorithms

I 8. Data Structures for Search Algorithms
I 9. Tree Search and Graph Search
I 10. Breadth-first Search
I 11. Uniform Cost Search
I 12. Depth-first Search and Iterative Deepening

I 13.–19. Heuristic Algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 3 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

8.1 Introduction

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 4 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Search Algorithms

I We now move to search algorithms.

I As everywhere in computer science, suitable data structures
are a key to good performance.

 common operations must be fast

I Well-implemented search algorithms process
up to ∼30,000,000 states/second on a single CPU core.

 bonus materials (Burns et al. paper)

this chapter: some fundamental data structures for search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 5 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Preview: Search Algorithms

I next chapter: we introduce search algorithms

I now: short preview to motivate data structures for search

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 6 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Example: Search Algorithm

I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

German: expandieren, erzeugen

〈3, 3, 1〉

. . . and so on (expansion order depends on search algorithm used)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 7 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Example: Search Algorithm

I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

German: expandieren, erzeugen

〈3, 3, 1〉

. . . and so on (expansion order depends on search algorithm used)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 8 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Example: Search Algorithm

I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

German: expandieren, erzeugen

〈3, 3, 1〉

〈2, 2, 0〉 〈3, 2, 0〉 〈3, 1, 0〉

. . . and so on (expansion order depends on search algorithm used)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 9 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Example: Search Algorithm

I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

German: expandieren, erzeugen

〈3, 3, 1〉

〈2, 2, 0〉 〈3, 2, 0〉

〈3, 3, 1〉

〈3, 1, 0〉

. . . and so on (expansion order depends on search algorithm used)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 10 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Example: Search Algorithm

I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

German: expandieren, erzeugen

〈3, 3, 1〉

〈2, 2, 0〉

〈3, 2, 1〉 〈3, 3, 1〉

〈3, 2, 0〉

〈3, 3, 1〉

〈3, 1, 0〉

. . . and so on (expansion order depends on search algorithm used)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 11 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Example: Search Algorithm

I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

German: expandieren, erzeugen

〈3, 3, 1〉

〈2, 2, 0〉

〈3, 2, 1〉 〈3, 3, 1〉

〈3, 2, 0〉

〈3, 3, 1〉

〈2, 2, 0〉 〈3, 2, 0〉 〈3, 1, 0〉

〈3, 1, 0〉

. . . and so on (expansion order depends on search algorithm used)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 12 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Example: Search Algorithm

I Starting with initial state,

I repeatedly expand a state by generating its successors.

I Stop when a goal state is expanded

I or all reachable states have been considered.

German: expandieren, erzeugen

〈3, 3, 1〉

〈2, 2, 0〉

〈3, 2, 1〉 〈3, 3, 1〉

〈3, 2, 0〉

〈3, 3, 1〉

〈2, 2, 0〉 〈3, 2, 0〉 〈3, 1, 0〉

〈3, 1, 0〉

. . . and so on (expansion order depends on search algorithm used)
M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 13 / 32

8. State-Space Search: Data Structures for Search Algorithms Introduction

Fundamental Data Structures for Search

We consider three abstract data structures for search:

I search node: stores a state that has been reached,
how it was reached, and at which cost

 nodes of the example search tree

I open list: efficiently organizes leaves of search tree

 set of leaves of example search tree

I closed list: remembers expanded states
to avoid duplicated expansions of the same state

 inner nodes of a search tree

German: Suchknoten, Open-Liste, Closed-Liste

Not all algorithms use all three data structures,
and they are sometimes implicit (e.g., in the CPU stack)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 14 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

8.2 Search Nodes

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 15 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

Search Nodes

Search Node

A search node (node for short) stores a state
that has been reached, how it was reached, and at which cost.

Collectively they form the so-called search tree (Suchbaum).

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 16 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

Attributes of a Search Node

Attributes of a Search Node n
n.state state associated with this node

n.parent search node that generated this node
(none for the root node)

n.action action leading from n.parent to n
(none for the root node)

n.path cost cost of path from initial state to n.state
that result from following the parent references
(traditionally denoted by g(n))

. . . and sometimes additional attributes (e.g., depth in tree)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 17 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

Search Nodes: Java

Search Nodes (Java Syntax)

public interface State {

}

public interface Action {

}

public class SearchNode {

State state;

SearchNode parent;

Action action;

int pathCost;

}

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 18 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

Node in a Search Tree

1

23

45

6

7

81

23

45

6

7

8

Node
DEPTH = 6

STATE

PARENT-NODE

ACTION = right

PATH-COST = 6

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 19 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

Implementing Search Nodes

I reasonable implementation of search nodes is easy
I advanced aspects:

I Do we need explicit nodes at all?
I Can we use lazy evaluation?
I Should we manually manage memory?
I Can we compress information?

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 20 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

Operations on Search Nodes: make root node

Generate root node of a search tree:

function make root node()

node := new SearchNode
node.state := init()
node.parent := none
node.action := none
node.path cost := 0
return node

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 21 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

Operations on Search Nodes: make node

Generate child node of a search node:

function make node(parent, action, state)

node := new SearchNode
node.state := state
node.parent := parent
node.action := action
node.path cost := parent.path cost + cost(action)
return node

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 22 / 32

8. State-Space Search: Data Structures for Search Algorithms Search Nodes

Operations on Search Nodes: extract path

Extract the path to a search node:

function extract path(node)

path := 〈〉
while node.parent 6= none:

path.append(node.action)
node := node.parent

path.reverse()
return path

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 23 / 32

8. State-Space Search: Data Structures for Search Algorithms Open Lists

8.3 Open Lists

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 24 / 32

8. State-Space Search: Data Structures for Search Algorithms Open Lists

Open Lists

Open List

The open list (also: frontier) organizes the leaves of a search tree.

It must support two operations efficiently:

I determine and remove the next node to expand

I insert a new node that is a candidate node for expansion

Remark: despite the name, it is usually a very bad idea
to implement open lists as simple lists.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 25 / 32

8. State-Space Search: Data Structures for Search Algorithms Open Lists

Open Lists: Modify Entries

I Some implementations support modifying an open list entry
when a shorter path to the corresponding state is found.

I This complicates the implementation.

 We do not consider such modifications
and instead use delayed duplicate elimination (later)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 26 / 32

8. State-Space Search: Data Structures for Search Algorithms Open Lists

Interface of Open Lists

Methods of an Open List open

open.is empty() test if the open list is empty

open.pop() removes and returns the next node to expand

open.insert(n) inserts node n into the open list

I Different search algorithm use different strategies
for the decision which node to return in open.pop.

I The choice of a suitable data structure depends
on this strategy (e.g., stack, deque, min-heap).

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 27 / 32

8. State-Space Search: Data Structures for Search Algorithms Closed Lists

8.4 Closed Lists

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 28 / 32

8. State-Space Search: Data Structures for Search Algorithms Closed Lists

Closed Lists

Closed List
The closed list remembers expanded states
to avoid duplicated expansions of the same state.

It must support two operations efficiently:

I insert a node whose state is not yet in the closed list

I test if a node with a given state is in the closed list;
if yes, return it

Remark: despite the name, it is usually a very bad idea
to implement closed lists as simple lists. (Why?)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 29 / 32

8. State-Space Search: Data Structures for Search Algorithms Closed Lists

Interface and Implementation of Closed Lists

Methods of a Closed List closed

closed.insert(n) insert node n into closed;
if a node with this state already exists in closed,
replace it

closed.lookup(s) test if a node with state s exists in the closed list;
if yes, return it; otherwise, return none

I Hash tables with states as keys can serve as
efficient implementations of closed lists.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 30 / 32

8. State-Space Search: Data Structures for Search Algorithms Summary

8.5 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 31 / 32

8. State-Space Search: Data Structures for Search Algorithms Summary

Summary

I search node:
represents states reached during search
and associated information

I node expansion:
generate successor nodes of a node by applying all actions
applicable in the state belonging to the node

I open list or frontier:
set of nodes that are currently candidates for expansion

I closed list:
set of already expanded nodes (and their states)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 4, 2019 32 / 32

	Introduction
	

	Search Nodes
	

	Open Lists
	

	Closed Lists
	

	Summary
	

