Foundations of Artificial Intelligence

M. Helmert University of Basel
J. Seipp Computer Science
Spring Term 2019

Exercise Sheet 10
Due: May 8, 2019

Exercise 10.1 (141.541.542 marks)

Consider the following variant of the Seven bridges of Konigsberg problem: for a given set of bridges
that cross a river, is there a tour that starts and ends at the same location and crosses each bridge
exactly once? Formally, the problem can be defined as follows: given a graph G = (V, E) with a
set of vertices V and a set of edges £ C V x V and an initial vertex vy € V, is there a sequence
of vertices from V such that i) all pairs of subsequent vertices are connected by an edge from F,
ii) each edge in E occurs exactly once in the sequence, and iii) the first and last vertex of the
sequence is vg? For an illustration of the problem, consider the following examples:

The initial vertex is vg in both cases. For the graph on the left side, there is such a tour, e.g.,
(vo,v1,v2,vg), while there is no such tour for the graph on the right side.

(a) You can find a PDDL description of the (original instance of the) Seven bridges of Kdnigsberg
problem on the website of the course. The domain description (variables and actions) is given
in the file bridges-once-domain.pddl, and the problem description (objects, initial state
and goal description) is given in the file koenigsberg-problem.pddl. Provide a graphical
representation of the problem in the same way as the example above. Please do not forget
to mark which location is the initial location.

(b) Obtain the domain-independent planning system Fast Downward by following the installa-
tion instructions that are given at

http://www.fast-downward.org/ObtainingAndRunningFastDownward.

Use Fast Downward with a configuration that performs greedy best-first search with the
delete relaxation heuristic FF to solve the Seven bridges of Konigsberg problem from the
website. To do so, invoke the planner with

./fast-downward.py bridges-once-domain.pddl koenigsberg-problem.pddl
--search "eager greedy([f£f()]1)"

Provide the runtime and the number of expanded states. Discuss whether the solution is
optimal. Is the problem solvable? If it is, provide the plan that was found.

(¢) Modify the domain description (bridges-once-domain.pddl) such that it is possible to use
the same bridge more than once. Solve the resulting problem with the same Fast Downward
configuration that was used in part (b) of this exercise.

Provide the runtime and the number of expanded states. Discuss whether the solution is
optimal. Is the problem solvable? If it is, provide the plan that was found.

(d) Formalize the following instance of the bridges domain in PDDL and solve it with the same
Fast Downward configuration that was used in part (b) of this exercise where each bridge
may be traversed only once.

Provide the runtime and the number of expanded states. Discuss whether the solution is
optimal. Is the problem solvable? If it is, provide the plan that was found.

http://www.fast-downward.org/ObtainingAndRunningFastDownward

Exercise 10.2 (0.54+0.540.540.5 marks)

Consider the STRIPS formalization of blocks world (print-out version of slide set 34, pages 10-13).
Consider the following task with blocks A, B and C, initial state I = {on-tablea, ong, 4, onc g, clearc}
(left stack in the picture below) and the goal G = {on-tables, onc 4, onp,c} (right stack in the
picture below).

C B
B C
A A

(a) Calculate the perfect heuristic values h*(I) and h*(I’) for the initial state I and the only
successor state I’ of I.

(b) Consider the STRIPS heuristic h® (print-out version of slide set 35, page 4). Calculate the
heuristic values 1% (I) and h®(I").

(c) Calculate h™(I) and h*(I").

(d) Compare and discuss the results of exercise parts (a), (b) and (c).

Exercise 10.3 (2+2 bonus marks)

Hint: This is a bonus exercise, so its 4 marks are not considered when the amount of marks
required for admission to the exam is computed. However, the marks you obtain in this exercise
count towards your achieved total marks.

Consider the 8-Puzzle in a STRIPS encoding I = (V, I, G, A) with the following components:

o V = {tile-at-cell; . | t € {1,...,8},c € {(1,1),...,(3,3)}} U
{cell-empty, | c € {(1,1),...,(3,3)}}

e [is an arbitrary legal state, where a state is legal if each tile is at exactly one position, no
two tiles are at the same position and there is exactly one empty position.

e G = {tile-at-celly (1 1), ..., tile-at-cellg (3 2) }

o A={move,co |t€{l,...,8}, ¢, €{1,2,3} x{1,2,3},c and ¢ are neighbours}

All actions have cost 1 and are defined as follows:

— pre(movey ¢) = {tile-at-cell; ., cell-empty . }
— add(movey ¢ o) = {tile-at-cell; ./, cell-empty, }
— del(movey ¢ o) = {tile-at-cell; ., cell-empty,, }
(a) For this STRIPS encoding of the 8-Puzzle, show the claim of the lecture (Chapter 35, slide

18 in the printed version): h*(s) > hMP(s) for all states s, i.e., ht dominates the Manhattan
distance in the 8-Puzzle.

(b) Show that there exists a legal state s with AT (s) > hMP(s).

Important: Solutions should be submitted in groups of two students. However, only one student
should upload the solution. Please provide both student names on each file and each page you
submit. We can only accept a single PDF or a ZIP file containing *.java or *.pddl files and a
single PDF.

