
Foundations of Artificial Intelligence

M. Helmert
J. Seipp
Spring Term 2019

University of Basel
Computer Science

Exercise Sheet 5
Due: April 3, 2019

Exercise 5.1 (2+2 marks)

Consider the following map:

Basel Baden

Aarau

Olten

Zürich

Luzern

Zug

70

48
14

27

50

55

24

30

32

Let the air-line distance between Zug
and the other cities be given by the
following table:

city distance

Aarau 44
Baden 38
Basel 83
Luzern 21
Olten 51
Zug 0
Zürich 23

Consider the heuristic that maps each state to its air-line distance to Zug.

(a) Provide the search tree of A? (without reopening) when queried for the shortest path from
Basel to Zug. Indicate the order in which nodes are expanded and annotate each node with
its f -, g-, and h-values.

(b) Provide the search tree of greedy best-first search (without reopening) when queried for a
path from Basel to Zug. Indicate the order in which nodes are expanded. Compare the
result to the result of (a).

Exercise 5.2 (3+3+2 marks)

The task in this exercise is to write a software program. We expect you to implement your code
on your own, without using existing code you find online. If you encounter technical problems or
have difficulties understanding the task, please let us know. For this exercise, you only have to
change the files FreecellStateSpace.java and AstarSearch.java.

(a) We have extended the interface StateSpace with a method that returns a heuristic value for
the given state (the method is called public int h(State s)). The FreecellStateSpace

class already contains the skeleton of this method. Implement a heuristic that computes the
sum of

• the number of cards that have not been moved onto a foundation pile yet, and

• the number of cards that have to be moved to another (non-foundation) pile at least
once because there is a card of the same suit and lower rank below it in the same pile.

To understand how the heuristic is computed, consider the following example state s for a
Freecell instance with cards up to rank 3:



♥ 3

♦ 3

♥ 1

♣ 3

♥ 2

All cards that are not depicted have already been moved to the corresponding foundation
pile. The first part of the proposed heuristic counts the number of cards that are not yet on
a foundation pile, which evaluates to 5. The second part evaluates to 1, as there is only one
card (♥ 3) that has to be moved onto another non-foundation pile because there is a card of
the same suit and lower rank below it (♥ 1). The heuristic value of s is therefore h(s) = 6.

(b) Implement A? without node reopening in AstarSearch.java. Make sure that the value of
the member variable expandedStates of the parent class SearchAlgorithmBase is updated
correctly.

(c) Test your implementation on the example problem instances provided in the tarball on the
course website. Set a time limit of 10 minutes and a memory limit of 2 GB for each run. On
Linux, you can set a time limit of 10 minutes with the command ulimit -t 600. Running
your implementation on the first example instance with

java -Xmx2048M AstarSearch freecell freecell inst 1

sets the memory limit to 2 GB. You are free to use higher memory limits. In any case,
mention the limit in your solution.

Report runtime, number of node expansions, solution length and solution cost for all in-
stances that can be solved within the given time and memory limits. For all other instances,
report if the time or the memory limit was hit.

Important: Solutions should be submitted in groups of two students. However, only one student
should upload the solution. Please provide both student names on each file and each page you
submit. We can only accept a single PDF or a ZIP file containing *.java or *.pddl files and a
single PDF.


