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M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 1 / 36

Algorithmen und Datenstrukturen
22. Mai 2019 — D2. Suche in Stringsa

a
Folien angelehnt an Vorlesungsfolien von Sedgewick & Wayne

https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf

D2.1 Einführung
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M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 2 / 36

D2. Suche in Strings2 Einführung
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Erinnerung: Symboltabellen

Abstraktion für Schlüssel/Werte Paar

Grundlegende Operationen

I Speichere Schlüssel mit dazugehörendem Wert.

I Suche zu Schlüssel gehörenden Wert.

I Schlüssel und Wert löschen.

Typische Beispiele

I DNS - Suche IP-Adresse zu Domainnamen

I Telefonbuch - Suche Telefonnummer zu Person / Adresse

I Wörterbuch - Suche Übersetzungen für Wort
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Übersicht

Worst-case Average-case
Implementation suchen einfügen suchen (hit) einfügen
Rot-Schwarz Bäume 2 log2(N) 2 log2(N) 1 log2(N) 1 log2(N)
Hashtabellen N N 1 1

I Frage: Geht es noch schneller?

I Antwort: Ja, wenn wir nicht ganzen String vergleichen müssen.
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Symboltabelle für Strings

class StringST[Value]:

def StringST ()

def put(key : String , value : Value) -> None

def get(key : String) -> Value

def delete(key : String) -> None

def keys() -> Iterator[String]

Normale Symboltabellen Operationen, aber mit fixem Typ String
als Schlüssel
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Symboltabelle für Strings

class StringST[Value]:

def StringST ()

def put(key : String , value : Value) -> None

def get(key : String) -> Value

def delete(key : String) -> None

def keys() -> Iterator[String]

def keysWithPrefix(s : String) -> Iterator[String]

def keysThatMatch(s : String) -> Iterator[String]

def longestPrefixOf(s : String) -> String

Mittels Tries lassen sich viele nützliche, zeichenbasierte
Suchoperationen definieren.
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D2.2 Tries
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Tries

Trie Von Retrieval.
I Ausgesprochen wie try

I Zeichen (nicht Schlüssel
werden in Knoten
gespeichert)

I Jeder Knoten hat R Knoten
(also einen pro möglichem
Zeichen)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung
5.19
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Erinnerung: Alphabet

Abstraktion Alphabet macht Code unabhängig von Alphabet.

class Alphabet:

def __init__(s : List[char])

def toChar(index : Int) -> char

def toIndex(c : Char) -> int

def contains(c : Char) -> boolean

def R() -> int # Radix

Name Radix (R) Bits (log2(R)) Zeichen
BINARY 2 1 0 1
DNA 4 2 A C G T
ASCII 128 7 ASCII Characters
EXTENDED ASCII 256 8 EXTENDED ASCII
UNICODE 1’114’112 21 UNICODE
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Repräsentation der Knoten

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.21

class Node:

value = None

children = [None] * R # R: Radix von Alphabet
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Suche in Trie

Dem Zeichen
entsprechenden Link
folgen

I Erfolgreiche Suche:
Endet an Knoten mit
definiertem Wert

I Erfolglose Suche:
Endet an Knoten mit
undefiniertem Wert
(null)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.20
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Suche in Tries

def get(node , key , d):

if (node == None):

return None

if d == len(key):

return node

c = alphabet.toIndex(key[d])

return get(node.children[c], key , d + 1)
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Einfügen in Trie

Dem Zeichen
entsprechenden Link
folgen

I Erfolgreiche Suche:
Wert neu setzten

I Erfolglose Suche:
Neuen Knoten
erzeugen.

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.22
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Einfügen in Trie

def put(node , key , value , d):

if node == None:

node = Node(alphabet.radix ())

if d == len(key):

node.value = value

return node

c = alphabet.toIndex(key[d])

node.children[c] = put(node.children[c], key , value , d + 1)

return node
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Löschen von Schlüsseln

I Schlüssel finden und Knoten löschen.

I Rekursiv alle Knoten mit nur null-Werten und null-links
löschen

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.26
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Löschen von Schlüsseln

def delete(node , key , d):

if node == None:

return None

if d == len(key):

node.value = None

else:

c = alphabet.toIndex(key[d])

node.children[c] = delete(node.children[c], key , d + 1)

if node.value != None:

return node

nonNullChildren = [c for c in node.children if c != None]

if len(nonNullChildren) > 0:

return node

else:

return None
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Implementation und Beispielanwendung

Jupyter Notebook: Tries.ipynb
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Analyse: Form des Tries

Theorem

Die verkettete Struktur (Form) eines Trie ist nicht abhängig von
der Schlüsselreihenfolge beim Löschen/Einfügen: Für jede
gegebene Menge von Schlüsseln gibt es einen eindeutigen Trie.
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Analyse: Einfügen

Theorem
Die Anzahl der Arrayzugriffe beim Suchen in einem Trie oder beim
Einfügen eines Schlüssels in einen Trie ist höchstens 1 plus der
Länge des Schlüssels.

Theorem
Die durchschnittliche Anzahl der untersuchten Knoten bei einer
erfolglosen Suche in einem Trie, der aus N Zufallsschlüsseln über
einem Alphabet der Grösse R erstellt wird, beträgt ∼ logR(N).
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Take-Home Message

Auch in riesigen Datenmengen können wir mit wenigen Vergleichen
jeden Wert finden.
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Speichereffiziente Variante: Ternäre Suchtries

Ein Problem mit Tries

I In jedem Knoten wird ein Array der Grösse R gespeichert

I Beispiel Unicode (utf-16): R = 216 = 65536.

Lösung:

I Speichere Zeichen c sowie Wert im Knoten
I Jeder Knoten hat 3 Kinder:

I Kleiner c (linker Teilbaum)
I Gleich c (mittlerer Teilbaum)
I Grösser c (rechter Teilbaum)

Bentley, Jon L., and Robert Sedgewick. ”Fast algorithms for
sorting and searching strings.”1997.
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Speichereffiziente Variante: Ternäre Suchtries

Beispiel:

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.28

I Bei Übereinstimmung wird Suche mit nächstem Zeichen im
mittleren Teilbaum weitergeführt.

I Suche ist erfolgreich, wenn Wert in Endknoten der Suche
gespeichert ist.
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Tries versus Hashing

Hashing:

I Muss ganzen Schlüssel anschauen

I Etwa gleiche Kosten für erfolgreiche und erfolglose Suche

I Performance hängt von Hashfuktion ab

I Keine ordnungsbasierten Operationen

Tries:

I Nur für Strings geeignet

I Macht nur so viele Vergleiche wie gerade benötigt werden

I Erfolglose Suche benötigt nur ein paar Zeichenvergleichen

I Flexible zeichenbasierte Operationen werden unterstützt
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D2.3 Zeichenbasierte Operationen
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Zeichenbasierte Operationen

Schlüssel Wert

by 4
sea 6
sells 1
she 0
shells 3
shore 7
the 5

Präfix matching Präfix: sh: Schlüssel, she,
shells, shore

Wildcard matching .he: Schlüssel, she, the

Längstes Präfix Anfrage: shellsort
Schlüssel: shells
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Präfixübereinstimmung

Beispielanwendung: Autocomplete
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Zeichenbasierte Operationen

class StringST:

def StringST ()

def put(key : String , value : Value) -> None

def get(key : String) -> Value

def delete(key : String) -> None

def keys() -> Iterator[String]

def keysWithPrefix(s : String) -> Iterator[String]

def keysThatMatch(s : String) -> Iterator[String]

def longestPrefixOf(s : String) -> String
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Warmup: Alle Schlüssel zurückgeben

I Traversieren des Baumes
I Bei jedem Knoten mit Wert 6= null, Schlüssel merken

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.23
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Präfixübereinstimmung

I Subtrie mit Präfix finden

I Alle Schlüssel von diesem Subtrie zurückgeben

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.24
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Präfixübereinstimmung

def keys(node):

return keysWithPrefix(node , "")

def keysWithPrefix(node , refix):

queue = []

collect(get(node , prefix , 0), prefix , queue)

return queue

def collect(node , prefix , queue ):

if node == None:

return

if node.value != None:

queue.append(prefix)

labeledChildren = [( alphabet.toChar(p), child)

for (p, child) in enumerate(node.children)

if child != None]

for (char , child) in labeledChildren:

collect(child , prefix + char , queue)
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Längstes Präfix

I Beispielanwendung: Routing, LZW-Kompression

”128”
”128.112”
”128.112.055”
”128.112.055.15”
”128.112.136”
”128.112.155.11”
”128.112.155.13”
”128.222”
”128.222.136”

Anfrage:
longestPrefixOf(”128.112.136.11”) = ”128.112.136”
longestPrefixOf(”128.112.100.16”) = ”128.112”
longestPrefixOf(”128.166.123.45”) = ”128”

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 32 / 36



D2. Suche in Strings32 Zeichenbasierte Operationen

Längstes Präfix

I Nach Anfragestring suchen

I Längster Schlüssel auf dem Weg dahin speichern.

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.25
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Längstes Präfix

def longestPrefixOf(node , s):

l = search(node , s, 0, 0)

return s[0:l]

def search(node , s, d, length ):

if node == None:

return length

if node.value != None:

length = d

if d == len(s):

return length

c = alphabet.toIndex(s[d])

return search(node.children[c], s, d+1, length)
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Quiz: Wildcard matching

I Wie implementieren wir Wildcard matching?

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.28
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Zusammenfassung Symboltabellen

Wir haben viele sehr effiziente Implementation zur Auswahl.

Rot-Schwarz Bäume

I Garantie: log(N) Schlüsselvergleiche

I Ordnungsbasierte Operationen

Hashtabellen

I Durchschnittliche Komplexität Suche, Einfügen O(1)

I Benötigt gute Hashfunktion

Tries

I Garantie: Komplexität um String der Länge N zu suchen:
log(N)

I Mächtige zeichenbasierte Operationen
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