Algorithmen und Datenstrukturen
D2. Suche in Strings®

Marcel Lithi

Universitat Basel

22. Mai 2019

1_ . . .
Folien angelehnt an Vorlesungsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 1/36

Algorithmen und Datenstrukturen
22. Mai 2019 — D2. Suche in Strings®

a_ . . .
Folien angelehnt an Vorlesungsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf

D2.1 Einfiihrung
D2.2 Tries

D2.3 Zeichenbasierte Operationen

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen

22. Mai 2019

/36

D2. Suche in Strings2 Einfiihrung

D2.1 Einfiihrung

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 3/36

D2. Suche in Strings3

Erinnerung: Symboltabellen

Abstraktion fiir Schliissel/Werte Paar

Grundlegende Operationen

> Speichere Schliissel mit dazugehdrendem Wert.

» Suche zu Schliissel gehérenden Wert.
» Schliissel und Wert l6schen.

Typische Beispiele

» DNS - Suche IP-Adresse zu Domainnamen

» Telefonbuch - Suche Telefonnummer zu Person / Adresse

» Worterbuch - Suche Ubersetzungen fiir Wort

M. Liithi (Universitdt Basel) Algorithmen und Datenstrukturen

22. Mai 2019

Einfiihrung

4/

https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf
https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf

D2. Suche in Strings4 Einfiihrung

Ubersicht

Worst-case Average-case
Implementation suchen einfiigen suchen (hit) einfiigen
Rot-Schwarz Bdume 2logy(N) 2logy(N) 1logy(N) 1log,(N)
Hashtabellen N N 1 1

> Frage: Geht es noch schneller?

» Antwort: Ja, wenn wir nicht ganzen String vergleichen miissen.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 5/ 36

D2. Suche in Str\'ngs5 Einfiihrung

Symboltabelle fiir Strings

class StringST[Valuel:
def StringST()
def put(key : String, value : Value) -> None
def get(key : String) -> Value
def delete(key : String) -> Nomne

def keys() -> Iterator[String]

Normale Symboltabellen Operationen, aber mit fixem Typ String
als Schliissel

D2. Suche in Strings6 Einfiihrung

Symboltabelle fiir Strings

class StringST[Valuel:
def StringST()
def put(key : String, value : Value) -> None
def get(key : String) -> Value
def delete(key : String) -> None
def keys() -> Iterator[String]
def keysWithPrefix(s : String) -> Iterator[String]
def keysThatMatch(s : String) -> Iterator[String]

def longestPrefix0f(s : String) -> String

Mittels Tries lassen sich viele niitzliche, zeichenbasierte
Suchoperationen definieren.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 7 /36

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 6 /36
D2. Suche in Strings7 Tries
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 8 /36

D2. Suche in Strings8 Tries

Tries

Trie Von Retrieval.
» Ausgesprochen wie try

Waurzel

Referenz auf Trie fiir alle
Schliissel, die mit s beginnen

Referenz auf Trie fiir
aj;le Schlilg;el, dlje
mit she beginnen

» Zeichen (nicht Schliissel
werden in Knoten
gespeichert)

» Jeder Knoten hat R Knoten

Schliissel Wert

by 4
. TN sea 2
(also einen pro méglichem y - sells 1
. jeder Knoten wir she 0

mit dem Zeichen — e 3
ZEIChen) beschriftet, das shells 3
mit der auf ihn the 5

weisenden Referenz
assoziiert ist.

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung
5.19

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 9 /36

D2. Suche in Strings9 Tries

Erinnerung: Alphabet

Abstraktion Alphabet macht Code unabhingig von Alphabet.

class Alphabet:
def __init__(s : List[char])
def toChar(index : Int) -> char
def toIndex(c : Char) -> int
def contains(c : Char) -> boolean
def R() -> int # Radiz

D2. Suche in Strings10 Tries

Reprasentation der Knoten

Zeichen werden implizit

- durch den Referenzindex
/ \ definiert

R [
a ‘\1 ¢) : \‘ b \
I |2 | | o | o O |
| S] !
[FiRRR AN R R AR ARY AN R AR der Konoton hat ei
/ I{:"f';; w:)/:; r;(:j HL:r!;:r

|1 OO und einer Wert

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.21

class Node:
value = None
children = [None] * R # R: Radiz von Alphabet

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 11 /36

Name | Radix (R) Bits (logy(R)) Zeichen
BINARY 2 1 01
DNA 4 2 ACGT
ASCII 128 7 ASCII Characters
EXTENDED_ASCII | 256 8 EXTENDED_ASCII
UNICODE 1'114'112 21 UNICODE
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 10 / 36
D2. Suche in Strings11 Tries
Suche in Trie
sy () e
Dem Zeichen @ 6!
entsprechenden Link © ®
folgen T T
g @)
» Erfolgreiche Suche: ® @
. ®»
Endet an Knoten mit
definiertem Wert e O
» Erfolglose Suche: @

Endet an Knoten mit
undefiniertem Wert

(null)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.20

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 12 / 36

D2. Suche in Strings12 Tries

Suche in Tries

def get(node, key, d):

if (node == None):
return None
if d == len(key):

return node
¢ = alphabet.toIndex (keyl[d])
return get(node.children[c], key, 4 + 1)

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 13 / 36

D2. Suche in Strings14 Tries

Einfligen in Trie

def put(node, key, value, d):
if node == None:
node = Node(alphabet.radix())
if d == len(key):
node.value = value
return node
¢ = alphabet.toIndex (keyl[d])
node.children[c] = put(node.children[c], key, value, d + 1)
return node

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 15 / 36

D2. Suche in Strings13 Tries
Einfligen in Trie
Dem Zeichen put("shore, 7) Q
entsprechenden Link
folgen
» Erfolgreiche Suche: o)
Wert neu setzten ®
» Erfolglose Suche: ®
7
Neuen Knoten
erzeugen.
Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.22
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 14 / 36
D2. Suche in Strings15 Tries
Loschen von Schliisseln
» Schliissel finden und Knoten Idschen.
» Rekursiv alle Knoten mit nur null-Werten und null-links
|6schen
delete("shells");
Q P
© QL
)
® Oo
o Wert auf O
Q) /-”rulvl O T
setzen Wert ist nicht null; s
3 | Knoten nicht entfernen Referenz ist nicht null;
(Referenz auf Knoten zuriickliefern) Kioten nicht entfernen)
\ il Wert und null. (Referenz auf Knoten zuriickliefern)
Referenzen; Knoten entfernen
(niull-Referenz zuriickliefern)
Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.26
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 16 / 36

D2. Suche in Strings16

Tries D2. Suche in Str\'ngs17 Tries
Loschen von Schliisseln Implementation und Beispielanwendung
ZJupyter untited wosme
def delete (node s key s d) . File Edit View Inset Cell Kemel Help # | Python [Root] O
if node —= None . + x @B 4+ ¢ M B C cCoe “ & CellToobar & & @
return None
if d == len(key): Algorithmen und Datenstrukturen
node.value = None ,
1se: Interaktive Experimente
e :
¢ = alphabet.toIndex (keyl[d]) o npy and matplotis
node.children[c] = delete(node.children[c], key, d + 1) o
OULITI: [<malplotLib.Lines.DinezD at
if node.value != None: o
return node 0000
nonNullChildren = [c for ¢ in node.children if ¢ != Nomnel] 00000
if len(nonNullChildren) > O: o000
return node
else:
return None - .
Jupyter Notebook: Tries.ipynb
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 17 / 36 M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 18 / 36
D2. Suche in Strings18 Tries D2. Suche in Strings19 Tries

Analyse: Form des Tries Analyse: Einfiigen

Theorem

Die Anzahl der Arrayzugriffe beim Suchen in einem Trie oder beim
Einfiigen eines Schliissels in einen Trie ist hchstens 1 plus der
Lange des Schliissels.

Theorem

Die verkettete Struktur (Form) eines Trie ist nicht abhdngig von
der Schliisselreihenfolge beim Léschen/Einfiigen: Fiir jede
gegebene Menge von Schliisseln gibt es einen eindeutigen Trie. Theorem

Die durchschnittliche Anzahl der untersuchten Knoten bei einer
erfolglosen Suche in einem Trie, der aus N Zufallsschliisseln iiber
einem Alphabet der Grésse R erstellt wird, betragt ~ logr(N).

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 19 / 36

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 20 / 36

D2. Suche in Strings20

Take-Home Message

Auch in riesigen Datenmengen konnen wir mit wenigen Vergleichen
jeden Wert finden.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019

21/

Tries

36

D2. Suche in Stnngs”
Speichereffiziente Variante: Ternare Suchtries
Beispiel:

Referenz auf TST fiir
alle Schliissel, die
mit s beginnen

Referenz auf TST fiir alle
Schliissel, deren Anfangs-
buchstabe vor s liegt

jeder Knoten

hat drei
Rl:fi'n’nzm_

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.28

» Bei Ubereinstimmung wird Suche mit nichstem Zeichen im

mittleren Teilbaum weitergefiihrt.
M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 22. Mai 2019

23 /

Tries

36

L SULCTiT 1ot CIIUIBICI_II, VVECTITT VVET U 1T LTTURTTULCTT UtTT OuUtTTiItT

[JRR TR

D2. Suche in Strings?! Tries
Speichereffiziente Variante: Ternare Suchtries
Ein Problem mit Tries
» In jedem Knoten wird ein Array der Grosse R gespeichert
> Beispiel Unicode (utf-16): R = 21¢ = 65536.
Losung:
» Speichere Zeichen ¢ sowie Wert im Knoten
> Jeder Knoten hat 3 Kinder:
» Kleiner ¢ (linker Teilbaum)
» Gleich ¢ (mittlerer Teilbaum)
> Grosser ¢ (rechter Teilbaum)
Bentley, Jon L., and Robert Sedgewick. " Fast algorithms for
sorting and searching strings.” 1997.
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 22 / 36
D2. Suche in Strings® Tries
Tries versus Hashing
Hashing:
» Muss ganzen Schliissel anschauen
> Etwa gleiche Kosten fiir erfolgreiche und erfolglose Suche
» Performance hdngt von Hashfuktion ab
> Keine ordnungsbasierten Operationen
Tries:
» Nur fiir Strings geeignet
» Macht nur so viele Vergleiche wie gerade bendtigt werden
» Erfolglose Suche bendtigt nur ein paar Zeichenvergleichen
» Flexible zeichenbasierte Operationen werden unterstiitzt
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 24 / 36

D2. Suche in Strings24 Zeichenbasierte Operationen

D2.3 Zeichenbasierte Operationen

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 25 / 36

D2. Suche in Strings25

Zeichenbasierte Operationen

Schliissel Wert

Zeichenbasierte Operationen

b 4

sza 6 Prafix matching Préafix: sh: Schliissel, she,
sells 1 shells, shore

she 0 Wildcard matching .he: Schliissel, she, the
shells 3 Langstes Prafix Anfrage: shellsort

shore 7 Schliissel: shells

the 5

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen

22. Mai 2019 26 / 36

D2. Suche in Strings26 Zeichenbasierte Operationen

Prafixiibereinstimmung

Beispielanwendung: Autocomplete

Google

don|
donald knuth Remove
donald trump cartoon Remove

donald trump
donald glover
don camillo
donuts

doner kebab
donaueschingen
donald duck
donnie darko

Google Search I'm Feeling Lucky
Learn more

Report inappropriate predictions

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 27 / 36

D2. Suche in Strings27

Zeichenbasierte Operationen

class StringST:

def StringST()

Zeichenbasierte Operationen

def put(key : String, value : Value) -> None

def get(key : String) -> Value
def delete(key : String) -> None

def keys() -> Iterator[String]

def keysWithPrefix(s : String) -> Iterator[String]

def keysThatMatch(s : String) -> Iterator [String]

def longestPrefix0f (s : String) -> String

M. Liithi (Universitdt Basel) Algorithmen und Datenstrukturen

22. Mai 2019 28 / 36

D2. Suche in Strings28 Zeichenbasierte Operationen

Warmup: Alle Schliissel zuriickgeben

» Traversieren des Baumes
» Bei jedem Knoten mit Wert # null, Schliissel merken
keysWithPrefix("");

Schlussel q
b
by by
s

se
sea sea
sel
sell
sells sells
sh
she
shell
shells shells
sho
shor
shore shore
t
th
the the

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 29 / 36

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.23

D2. Suche in Str\'ngs29 Zeichenbasierte Operationen

Prafixiibereinstimmung

» Subtrie mit Prafix finden

» Alle Schliissel von diesem Subtrie zuriickgeben

keysWithPrefix("sh");

she she
shells shells

()
shor
0 shore shore
(&7 sammelt Schliissel
O in diesem Teiltrie

alle Schliissel, die mit
"sh" beginnen

(h)

(&0
findet Teiltrie fiir /

@

@

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.24

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 30 / 36

D2. Suche in Strings30 Zeichenbasierte Operationen

Prafixiibereinstimmung

def keys(node):
return keysWithPrefix (node, "")

def keysWithPrefix(node, refix):
queue = []
collect (get(node, prefix, 0), prefix, queue)
return queue

def collect(node, prefix, queue):
if node == None:
return
if node.value != None:
queue . append (prefix)

labeledChildren = [(alphabet.toChar(p), child)
for (p, child) in enumerate(node.children)
if child != Nonel

for (char, child) in labeledChildren:
collect(child, prefix + char, queue)

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 31/ 36

D2. Suche in Str\'ngs31 Zeichenbasierte Operationen

Langstes Prafix

> Beispielanwendung: Routing, LZW-Kompression

"128" Anfrage:

"128.112" longestPrefixOf("128.112.136.11") = "128.112.136"
"128.112.055" longestPrefixOf("128.112.100.16") = "128.112"
"128.112.055.15" longestPrefixOf(" 128.166.123.45") = "128"
"128.112.136"

"128.112.155.11"
"128.112.155.13"
"128.222"
"128.222.136"

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 22. Mai 2019 32 /36

D2. Suche in Strings32

Langstes Prafix

» Nach Anfragestring suchen

Zeichenbasierte Operationen

> Liangster Schliissel auf dem Weg dahin speichern.

w
>
o

(0
®o

N

Suche endet am

"shellsort" .

O,
®o
©)
@
(5)3

Ende des Strings; Suche endet
Wert ist nicht null; an einer
she zuriickliefern null-Referenz;

M. Liithi (Universitit Basel)

"«— shells zuriick-

liefern (letzter

Schliissel auf
dem Pfad)

"sheﬂ"
©
Q)

(@0 Sucheendet am
Ende des Strings;
o Wert ist null;
she zuriickliefern
(letzter Schliissel
o im Pfad)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.25

Algorithmen und Datenstrukturen

22. Mai 2019 33 /36

D2. Suche in Strings33

Langstes Prafix

Zeichenbasierte Operationen

M. Liithi (Universitit Basel)

def longestPrefix0f (node, s):
1 = search(node, s, 0, 0)
return s[0:1]

def search(mode, s, d, length):
if node == None:
return length
if node.value != None:
length = d
if 4 == len(s):
return length
c¢ = alphabet.toIndex(s[dl)
return search(node.children([c], s, d+1, length)

Algorithmen und Datenstrukturen 22. Mai 2019

34 / 36

D2. Suche in Strings34

Quiz: Wildcard

matching

Zeichenbasierte Operationen

» Wie implementieren wir Wildcard matching?

M. Liithi (Universitdt Basel)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.28

Algorithmen und Datenstrukturen

22. Mai 2019 35 / 36

D2. Suche in Strings35

M. Liithi (Universitdt Basel)

Zusammenfassung Symboltabellen

Wir haben viele sehr effiziente Implementation zur Auswahl.

Rot-Schwarz Baume
» Garantie: log(N) Schliisselvergleiche
» Ordnungsbasierte Operationen
Hashtabellen
» Durchschnittliche Komplexitdt Suche, Einfiigen O(1)
> Bendtigt gute Hashfunktion

Tries

» Garantie: Komplexitdt um String der Lange N zu suchen:

log(N)
» Maichtige zeichenbasierte Operationen

Algorithmen und Datenstrukturen 22. Mai 2019

Zeichenbasierte Operationen

36 / 36

	Einführung
	

	Tries
	

	Zeichenbasierte Operationen
	

