
Algorithmen und Datenstrukturen
D2. Suche in Strings1

Marcel Lüthi

Universität Basel

22. Mai 2019

1
Folien angelehnt an Vorlesungsfolien von Sedgewick & Wayne

https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 1 / 36

Algorithmen und Datenstrukturen
22. Mai 2019 — D2. Suche in Stringsa

a
Folien angelehnt an Vorlesungsfolien von Sedgewick & Wayne

https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf

D2.1 Einführung

D2.2 Tries

D2.3 Zeichenbasierte Operationen

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 2 / 36

D2. Suche in Strings2 Einführung

D2.1 Einführung

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 3 / 36

D2. Suche in Strings3 Einführung

Erinnerung: Symboltabellen

Abstraktion für Schlüssel/Werte Paar

Grundlegende Operationen

I Speichere Schlüssel mit dazugehörendem Wert.

I Suche zu Schlüssel gehörenden Wert.

I Schlüssel und Wert löschen.

Typische Beispiele

I DNS - Suche IP-Adresse zu Domainnamen

I Telefonbuch - Suche Telefonnummer zu Person / Adresse

I Wörterbuch - Suche Übersetzungen für Wort

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 4 / 36

https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf
https://algs4.cs.princeton.edu/lectures/52Tries-2x2.pdf


D2. Suche in Strings4 Einführung

Übersicht

Worst-case Average-case
Implementation suchen einfügen suchen (hit) einfügen
Rot-Schwarz Bäume 2 log2(N) 2 log2(N) 1 log2(N) 1 log2(N)
Hashtabellen N N 1 1

I Frage: Geht es noch schneller?

I Antwort: Ja, wenn wir nicht ganzen String vergleichen müssen.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 5 / 36

D2. Suche in Strings5 Einführung

Symboltabelle für Strings

class StringST[Value]:

def StringST ()

def put(key : String , value : Value) -> None

def get(key : String) -> Value

def delete(key : String) -> None

def keys() -> Iterator[String]

Normale Symboltabellen Operationen, aber mit fixem Typ String
als Schlüssel

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 6 / 36

D2. Suche in Strings6 Einführung

Symboltabelle für Strings

class StringST[Value]:

def StringST ()

def put(key : String , value : Value) -> None

def get(key : String) -> Value

def delete(key : String) -> None

def keys() -> Iterator[String]

def keysWithPrefix(s : String) -> Iterator[String]

def keysThatMatch(s : String) -> Iterator[String]

def longestPrefixOf(s : String) -> String

Mittels Tries lassen sich viele nützliche, zeichenbasierte
Suchoperationen definieren.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 7 / 36

D2. Suche in Strings7 Tries

D2.2 Tries

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 8 / 36



D2. Suche in Strings8 Tries

Tries

Trie Von Retrieval.
I Ausgesprochen wie try

I Zeichen (nicht Schlüssel
werden in Knoten
gespeichert)

I Jeder Knoten hat R Knoten
(also einen pro möglichem
Zeichen)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung
5.19

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 9 / 36

D2. Suche in Strings9 Tries

Erinnerung: Alphabet

Abstraktion Alphabet macht Code unabhängig von Alphabet.

class Alphabet:

def __init__(s : List[char])

def toChar(index : Int) -> char

def toIndex(c : Char) -> int

def contains(c : Char) -> boolean

def R() -> int # Radix

Name Radix (R) Bits (log2(R)) Zeichen
BINARY 2 1 0 1
DNA 4 2 A C G T
ASCII 128 7 ASCII Characters
EXTENDED ASCII 256 8 EXTENDED ASCII
UNICODE 1’114’112 21 UNICODE

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 10 / 36

D2. Suche in Strings10 Tries

Repräsentation der Knoten

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.21

class Node:

value = None

children = [None] * R # R: Radix von Alphabet

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 11 / 36

D2. Suche in Strings11 Tries

Suche in Trie

Dem Zeichen
entsprechenden Link
folgen

I Erfolgreiche Suche:
Endet an Knoten mit
definiertem Wert

I Erfolglose Suche:
Endet an Knoten mit
undefiniertem Wert
(null)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.20

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 12 / 36



D2. Suche in Strings12 Tries

Suche in Tries

def get(node , key , d):

if (node == None):

return None

if d == len(key):

return node

c = alphabet.toIndex(key[d])

return get(node.children[c], key , d + 1)

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 13 / 36

D2. Suche in Strings13 Tries

Einfügen in Trie

Dem Zeichen
entsprechenden Link
folgen

I Erfolgreiche Suche:
Wert neu setzten

I Erfolglose Suche:
Neuen Knoten
erzeugen.

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.22

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 14 / 36

D2. Suche in Strings14 Tries

Einfügen in Trie

def put(node , key , value , d):

if node == None:

node = Node(alphabet.radix ())

if d == len(key):

node.value = value

return node

c = alphabet.toIndex(key[d])

node.children[c] = put(node.children[c], key , value , d + 1)

return node

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 15 / 36

D2. Suche in Strings15 Tries

Löschen von Schlüsseln

I Schlüssel finden und Knoten löschen.

I Rekursiv alle Knoten mit nur null-Werten und null-links
löschen

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.26

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 16 / 36



D2. Suche in Strings16 Tries

Löschen von Schlüsseln

def delete(node , key , d):

if node == None:

return None

if d == len(key):

node.value = None

else:

c = alphabet.toIndex(key[d])

node.children[c] = delete(node.children[c], key , d + 1)

if node.value != None:

return node

nonNullChildren = [c for c in node.children if c != None]

if len(nonNullChildren) > 0:

return node

else:

return None

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 17 / 36

D2. Suche in Strings17 Tries

Implementation und Beispielanwendung

Jupyter Notebook: Tries.ipynb

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 18 / 36

D2. Suche in Strings18 Tries

Analyse: Form des Tries

Theorem

Die verkettete Struktur (Form) eines Trie ist nicht abhängig von
der Schlüsselreihenfolge beim Löschen/Einfügen: Für jede
gegebene Menge von Schlüsseln gibt es einen eindeutigen Trie.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 19 / 36

D2. Suche in Strings19 Tries

Analyse: Einfügen

Theorem
Die Anzahl der Arrayzugriffe beim Suchen in einem Trie oder beim
Einfügen eines Schlüssels in einen Trie ist höchstens 1 plus der
Länge des Schlüssels.

Theorem
Die durchschnittliche Anzahl der untersuchten Knoten bei einer
erfolglosen Suche in einem Trie, der aus N Zufallsschlüsseln über
einem Alphabet der Grösse R erstellt wird, beträgt ∼ logR(N).

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 20 / 36



D2. Suche in Strings20 Tries

Take-Home Message

Auch in riesigen Datenmengen können wir mit wenigen Vergleichen
jeden Wert finden.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 21 / 36

D2. Suche in Strings21 Tries

Speichereffiziente Variante: Ternäre Suchtries

Ein Problem mit Tries

I In jedem Knoten wird ein Array der Grösse R gespeichert

I Beispiel Unicode (utf-16): R = 216 = 65536.

Lösung:

I Speichere Zeichen c sowie Wert im Knoten
I Jeder Knoten hat 3 Kinder:

I Kleiner c (linker Teilbaum)
I Gleich c (mittlerer Teilbaum)
I Grösser c (rechter Teilbaum)

Bentley, Jon L., and Robert Sedgewick. ”Fast algorithms for
sorting and searching strings.”1997.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 22 / 36

D2. Suche in Strings22 Tries

Speichereffiziente Variante: Ternäre Suchtries

Beispiel:

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.28

I Bei Übereinstimmung wird Suche mit nächstem Zeichen im
mittleren Teilbaum weitergeführt.

I Suche ist erfolgreich, wenn Wert in Endknoten der Suche
gespeichert ist.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 23 / 36

D2. Suche in Strings23 Tries

Tries versus Hashing

Hashing:

I Muss ganzen Schlüssel anschauen

I Etwa gleiche Kosten für erfolgreiche und erfolglose Suche

I Performance hängt von Hashfuktion ab

I Keine ordnungsbasierten Operationen

Tries:

I Nur für Strings geeignet

I Macht nur so viele Vergleiche wie gerade benötigt werden

I Erfolglose Suche benötigt nur ein paar Zeichenvergleichen

I Flexible zeichenbasierte Operationen werden unterstützt

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 24 / 36



D2. Suche in Strings24 Zeichenbasierte Operationen

D2.3 Zeichenbasierte Operationen

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 25 / 36

D2. Suche in Strings25 Zeichenbasierte Operationen

Zeichenbasierte Operationen

Schlüssel Wert

by 4
sea 6
sells 1
she 0
shells 3
shore 7
the 5

Präfix matching Präfix: sh: Schlüssel, she,
shells, shore

Wildcard matching .he: Schlüssel, she, the

Längstes Präfix Anfrage: shellsort
Schlüssel: shells

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 26 / 36

D2. Suche in Strings26 Zeichenbasierte Operationen

Präfixübereinstimmung

Beispielanwendung: Autocomplete

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 27 / 36

D2. Suche in Strings27 Zeichenbasierte Operationen

Zeichenbasierte Operationen

class StringST:

def StringST ()

def put(key : String , value : Value) -> None

def get(key : String) -> Value

def delete(key : String) -> None

def keys() -> Iterator[String]

def keysWithPrefix(s : String) -> Iterator[String]

def keysThatMatch(s : String) -> Iterator[String]

def longestPrefixOf(s : String) -> String

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 28 / 36



D2. Suche in Strings28 Zeichenbasierte Operationen

Warmup: Alle Schlüssel zurückgeben

I Traversieren des Baumes
I Bei jedem Knoten mit Wert 6= null, Schlüssel merken

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.23
M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 29 / 36

D2. Suche in Strings29 Zeichenbasierte Operationen

Präfixübereinstimmung

I Subtrie mit Präfix finden

I Alle Schlüssel von diesem Subtrie zurückgeben

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.24

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 30 / 36

D2. Suche in Strings30 Zeichenbasierte Operationen

Präfixübereinstimmung

def keys(node):

return keysWithPrefix(node , "")

def keysWithPrefix(node , refix):

queue = []

collect(get(node , prefix , 0), prefix , queue)

return queue

def collect(node , prefix , queue ):

if node == None:

return

if node.value != None:

queue.append(prefix)

labeledChildren = [( alphabet.toChar(p), child)

for (p, child) in enumerate(node.children)

if child != None]

for (char , child) in labeledChildren:

collect(child , prefix + char , queue)

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 31 / 36

D2. Suche in Strings31 Zeichenbasierte Operationen

Längstes Präfix

I Beispielanwendung: Routing, LZW-Kompression

”128”
”128.112”
”128.112.055”
”128.112.055.15”
”128.112.136”
”128.112.155.11”
”128.112.155.13”
”128.222”
”128.222.136”

Anfrage:
longestPrefixOf(”128.112.136.11”) = ”128.112.136”
longestPrefixOf(”128.112.100.16”) = ”128.112”
longestPrefixOf(”128.166.123.45”) = ”128”

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 32 / 36



D2. Suche in Strings32 Zeichenbasierte Operationen

Längstes Präfix

I Nach Anfragestring suchen

I Längster Schlüssel auf dem Weg dahin speichern.

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.25

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 33 / 36

D2. Suche in Strings33 Zeichenbasierte Operationen

Längstes Präfix

def longestPrefixOf(node , s):

l = search(node , s, 0, 0)

return s[0:l]

def search(node , s, d, length ):

if node == None:

return length

if node.value != None:

length = d

if d == len(s):

return length

c = alphabet.toIndex(s[d])

return search(node.children[c], s, d+1, length)

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 34 / 36

D2. Suche in Strings34 Zeichenbasierte Operationen

Quiz: Wildcard matching

I Wie implementieren wir Wildcard matching?

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.28

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 35 / 36

D2. Suche in Strings35 Zeichenbasierte Operationen

Zusammenfassung Symboltabellen

Wir haben viele sehr effiziente Implementation zur Auswahl.

Rot-Schwarz Bäume

I Garantie: log(N) Schlüsselvergleiche

I Ordnungsbasierte Operationen

Hashtabellen

I Durchschnittliche Komplexität Suche, Einfügen O(1)

I Benötigt gute Hashfunktion

Tries

I Garantie: Komplexität um String der Länge N zu suchen:
log(N)

I Mächtige zeichenbasierte Operationen

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 22. Mai 2019 36 / 36


	Einführung
	

	Tries
	

	Zeichenbasierte Operationen
	


