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String algorithmen oder generische Algorithmen?

Alle Algorithmen zum Sortieren / Suchen wurden über
beliebige Schlüssel definiert.

Können direkt auf Strings angewendet werden.

Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schlüssel wird nicht ausgenutzt.

Frage

Können wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?
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Heutiges Programm

Motivation

Abstraktion: Alphabet

LSD-Sort

Quicksort für Strings

Repetition und Erweiterung bereits bekannter Konzepte
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Motivation
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Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Repräsentation
von Informationen

Programmcode

Datenrepräsentation im Web (HTML / Json / CSS )

Kommunikation (E-Mail, Textmessages)

Gensequenzen
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Anwendung 1: Programmcode

Programme sind Strings

Compiler / Interpreter interpretieren und transformieren
Strings in ausführbare Programme

IDEs bietet Funktionalität zur effizienten Suche und
Manipulation von Code

Selektion von allen Wörtern, die Suchergebniss entsprechen
Suche nach regulärem Ausdrücken
Refactoring
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Anwendung 2: Informations und Kommunikationssysteme

Text ist wichtigste Repräsentation für Information und
Kommunikation im Internet

E-Mail / SMS / ...: Text wird von einem an anderen Ort
transferiert.

Webbrowser: interpretiert CSS und HTML und stellt diesen
formatiert dar.

Suchmaschine: Muss grosse Mengen an Text effizient
indizieren und durchsuchen.
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Anwendung 3: Bioinformatik

The digital information that underlies biochemistry, cell biology,
and development can be represented by a simple string of G’s, A’s,
T’s, and C’s. This string is the root data structure of an organism’s
biology.

Maynard Olson - A time to sequence

Analyse des Genoms eines Organismus

Beispiel: Genom Mensch besteht ist String aus ca.
3’000’000’000 Zeichen

Beispielprobleme

Suchen von Sequenzen in grossen Datenbanken

Vergleichen von (Sub)-Sequenzen von Strings

Finden von häufig auftretenden Mustern

...
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Strings

String

Endliche Folge von Zeichen (Character)

Strings sind unveränderlich (immutable). Einmal erzeugt
können Strings nicht mehr verändert werden.

Ideale Schlüssel für Symboltabellen

Intern häufig als Array von Zeichen implementiert.

0 1 2 3 4 5 6 7 8 9 10 11

A T T A C K A T D A W N
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Characters

Früher:

7 Bit Zeichensatz (ASCII)

8 Bit Zeichensatz (extended ASCII)

Heute:

8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python

Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

Python kennt keinen Charactertyp. Ausdruck s[i] ist (UTF-8)
String der Länge 1.
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Abstraktion: Alphabet

Unicode umfasst 1’112’064 Zeichen.

Kleineres Alphabet reicht für viele Anwendungen aus

Name Radix (R) Bits (log2(R)) Zeichen
BINARY 2 1 0 1
DNA 4 2 A C G T
LOWERCASE 26 5 a - z
UPPERCASE 26 5 A-Z
ASCII 128 7 ASCII Characters
EXTENDED ASCII 256 8 EXTENDED ASCII
UNICODE 1’114’112 21 UNICODE
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Alphabet

Abstraktion Alphabet erlaubt uns Code unabhängig vom benutzten
Alphabet zu schreiben.

class Alphabet:

def __init__(s : List[char])

def toChar(index : Int) -> char

def toIndex(c : Char) -> int

def contains(c : Char) -> boolean

def R() -> int # Radix
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Sortieren von Strings
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Sortieralgorithmen

Algorithmus Laufzeit O(·) Speicherbedarf O(·) stabil
best/avg./worst best/avg./worst

Selectionsort n2 1 nein
Insertionsort n/n2/n2 1 ja
Mergesort n log n n ja
Quicksort n log n/n log n/n2 log n/log n/n nein
Heapsort n log n 1 nein

O(n log n) ist beweisbar der lower bound für allgemeine,
vergleichsbasierte, Sortierverfahren.
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Idee 1

Zeichen in Alphabet sind geordnet.
Sortierung kann durch ”Fachverteilen”hergestellt werden

Vergleiche: Radixsort

Erinnerung: Radixsort

Zahlen: z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Wiederhole mit zweitletzter Stelle, etc.

Grundlage LSD-Sortierverfahren
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Idee 2

Wie viele Character Vergleiche müssen durchgeführt werden
um zwei Strings zu vergleichen?

0 1 2 3 4 5 6 7

p r e f e t c h
p r e f i x e s

Worst case: Proportional zur Stringlänge

Aber: Oft sublinear

Wir können Sortieralgorithmen so schreiben, dass sie Vergleiche
auf einzelne Zeichen reduzieren.

Grundlage von 3-Wege Quicksort für Strings
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LSD-Sortierverfahren
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LSD-Sortierverfahren (1 Zeichen)

Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl zu sortierender Zeichen

count = [0] * (alphabet.radix () + 1)

aux = [None] * N

# Zeichen zaehlen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

count[indexOfchar + 1] += 1

# Kummulative Summe

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

# Verteilen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

countForChar = count[indexOfchar]

aux[countForChar] = a[i]

count[indexOfchar] += 1
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LSD-Sortierverfahren (1 Zeichen)

N = len(a) # Anzahl zu sortierender Zeichen in array a

count = [0] * (alphabet.radix () + 1)

# Zeichen Zaehlen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

count[indexOfchar + 1] += 1
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LSD-Sortierverfahren (1 Zeichen)

# Kummulative Summe

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]
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LSD-Sortierverfahren (1 Zeichen)

# Verteilen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

countForChar = count[indexOfchar]

aux[countForChar] = a[i]

count[indexOfchar] += 1
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LSD-Sortierverfahren (1 Zeichen)

Verfahren ist stabil

Zeitaufwand: Proportional zu N + R, wobei R Grösse des
Alphabets ist

Speicher: Proportional zu N + R (aux-Array und count Array)
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LSD-Sortierverfahren

Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)

Funktioniert, da Sortierung stabil ist
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LSD-Sortierverfahren

N = len(a); aux = [None] * N ; d = numDigits - 1

while d >= 0:

count = [0] * (alphabet.radix () + 1)

for i in range(0, N):

indexOfcharAtPosdInA = alphabet.toIndex(a[i][d])

count[indexOfcharAtPosdInA + 1] += 1

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

for i in range(0, N):

indexOfCharAtPosdInA = alphabet.toIndex(a[i][d])

countForChar = count[indexOfCharAtPosdInA]

aux[countForChar] = a[i]

count[indexOfCharAtPosdInA] += 1

for i in range(0, N):

a[i] = aux[i]

d -= 1
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Quicksort
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Erinnerung: Quicksort

Wähle Pivot Element

Partitioniere Array

Rekursion auf linkes und rechtes Teilarray
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Quicksort: Gleiche Schlüssel

Was passiert bei vielen gleichen Schlüsseln?

Unnötige Partitionierung von gleichen Schlüsseln.
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Quicksort: Gleiche Schlüssel

Was passiert bei vielen gleichen Schlüsseln?

Unnötige Partitionierung von gleichen Schlüsseln.
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3-Wege Quicksort

Gleiche Schlüssel sind bereits sortiert.

Kein rekursiver Aufruf mehr nötig.
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Quicksort für Strings

3-Wege Quicksort per
Buchstabe

Bei gleichen
Anfangsbuchstaben,
vergleiche nächsten
Buchstaben.

Quelle: Sedgewick & Wayne,
Algorithmen, Abbildung 5.16
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Quicksort für Strings

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18
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Laufzeit

Theorem

Um ein Array von N zufälligen Strings zu sortieren, benötigt der
3-Weg-Quicksort für Strings im Durchschnitt ∼ 2NlnN
Zeichenvergleiche.

Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

Aber: Wir haben Zeichenvergleiche und nicht
Schlüsselvergleiche
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Implementation

Jupyter Notebooks: Stringsort.ipynb
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