
Algorithmen und Datenstrukturen
D1. Sortieren von Strings

Gabi Röger und Marcel Lüthi

Universität Basel

16. Mai 2019

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Übersicht

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Sortieren

Suchen (Tries)

Kompression

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

String algorithmen oder generische Algorithmen?

Alle Algorithmen zum Sortieren / Suchen wurden über
beliebige Schlüssel definiert.

Können direkt auf Strings angewendet werden.

Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schlüssel wird nicht ausgenutzt.

Frage

Können wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Heutiges Programm

Motivation

Abstraktion: Alphabet

LSD-Sort

Quicksort für Strings

Repetition und Erweiterung bereits bekannter Konzepte

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Motivation

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Repräsentation
von Informationen

Programmcode

Datenrepräsentation im Web (HTML / Json / CSS)

Kommunikation (E-Mail, Textmessages)

Gensequenzen

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Anwendung 1: Programmcode

Programme sind Strings

Compiler / Interpreter interpretieren und transformieren
Strings in ausführbare Programme

IDEs bietet Funktionalität zur effizienten Suche und
Manipulation von Code

Selektion von allen Wörtern, die Suchergebniss entsprechen
Suche nach regulärem Ausdrücken
Refactoring

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Anwendung 2: Informations und Kommunikationssysteme

Text ist wichtigste Repräsentation für Information und
Kommunikation im Internet

E-Mail / SMS / ...: Text wird von einem an anderen Ort
transferiert.

Webbrowser: interpretiert CSS und HTML und stellt diesen
formatiert dar.

Suchmaschine: Muss grosse Mengen an Text effizient
indizieren und durchsuchen.

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Anwendung 3: Bioinformatik

The digital information that underlies biochemistry, cell biology,
and development can be represented by a simple string of G’s, A’s,
T’s, and C’s. This string is the root data structure of an organism’s
biology.

Maynard Olson - A time to sequence

Analyse des Genoms eines Organismus

Beispiel: Genom Mensch besteht ist String aus ca.
3’000’000’000 Zeichen

Beispielprobleme

Suchen von Sequenzen in grossen Datenbanken

Vergleichen von (Sub)-Sequenzen von Strings

Finden von häufig auftretenden Mustern

...

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Strings

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Strings

String

Endliche Folge von Zeichen (Character)

Strings sind unveränderlich (immutable). Einmal erzeugt
können Strings nicht mehr verändert werden.

Ideale Schlüssel für Symboltabellen

Intern häufig als Array von Zeichen implementiert.

0 1 2 3 4 5 6 7 8 9 10 11

A T T A C K A T D A W N

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Characters

Früher:

7 Bit Zeichensatz (ASCII)

8 Bit Zeichensatz (extended ASCII)

Heute:

8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python

Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

Python kennt keinen Charactertyp. Ausdruck s[i] ist (UTF-8)
String der Länge 1.

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Abstraktion: Alphabet

Unicode umfasst 1’112’064 Zeichen.

Kleineres Alphabet reicht für viele Anwendungen aus

Name Radix (R) Bits (log2(R)) Zeichen
BINARY 2 1 0 1
DNA 4 2 A C G T
LOWERCASE 26 5 a - z
UPPERCASE 26 5 A-Z
ASCII 128 7 ASCII Characters
EXTENDED ASCII 256 8 EXTENDED ASCII
UNICODE 1’114’112 21 UNICODE

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Alphabet

Abstraktion Alphabet erlaubt uns Code unabhängig vom benutzten
Alphabet zu schreiben.

class Alphabet:

def __init__(s : List[char])

def toChar(index : Int) -> char

def toIndex(c : Char) -> int

def contains(c : Char) -> boolean

def R() -> int # Radix

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Sortieren von Strings

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Sortieralgorithmen

Algorithmus Laufzeit O(·) Speicherbedarf O(·) stabil
best/avg./worst best/avg./worst

Selectionsort n2 1 nein
Insertionsort n/n2/n2 1 ja
Mergesort n log n n ja
Quicksort n log n/n log n/n2 log n/log n/n nein
Heapsort n log n 1 nein

O(n log n) ist beweisbar der lower bound für allgemeine,
vergleichsbasierte, Sortierverfahren.

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Sortieralgorithmen

Algorithmus Laufzeit O(·) Speicherbedarf O(·) stabil
best/avg./worst best/avg./worst

Selectionsort n2 1 nein
Insertionsort n/n2/n2 1 ja
Mergesort n log n n ja
Quicksort n log n/n log n/n2 log n/log n/n nein
Heapsort n log n 1 nein

O(n log n) ist beweisbar der lower bound für allgemeine,
vergleichsbasierte, Sortierverfahren.

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Idee 1

Zeichen in Alphabet sind geordnet.
Sortierung kann durch ”Fachverteilen”hergestellt werden

Vergleiche: Radixsort

Erinnerung: Radixsort

Zahlen: z.B. 763, 983, 96, 286, 462

Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

Wiederhole mit zweitletzter Stelle, etc.

Grundlage LSD-Sortierverfahren

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Idee 2

Wie viele Character Vergleiche müssen durchgeführt werden
um zwei Strings zu vergleichen?

0 1 2 3 4 5 6 7

p r e f e t c h
p r e f i x e s

Worst case: Proportional zur Stringlänge

Aber: Oft sublinear

Wir können Sortieralgorithmen so schreiben, dass sie Vergleiche
auf einzelne Zeichen reduzieren.

Grundlage von 3-Wege Quicksort für Strings

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

LSD-Sortierverfahren

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

LSD-Sortierverfahren (1 Zeichen)

Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl zu sortierender Zeichen

count = [0] * (alphabet.radix () + 1)

aux = [None] * N

Zeichen zaehlen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

count[indexOfchar + 1] += 1

Kummulative Summe

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

Verteilen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

countForChar = count[indexOfchar]

aux[countForChar] = a[i]

count[indexOfchar] += 1

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

LSD-Sortierverfahren (1 Zeichen)

N = len(a) # Anzahl zu sortierender Zeichen in array a

count = [0] * (alphabet.radix () + 1)

Zeichen Zaehlen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

count[indexOfchar + 1] += 1

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

LSD-Sortierverfahren (1 Zeichen)

Kummulative Summe

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

LSD-Sortierverfahren (1 Zeichen)

Verteilen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

countForChar = count[indexOfchar]

aux[countForChar] = a[i]

count[indexOfchar] += 1

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

LSD-Sortierverfahren (1 Zeichen)

Verfahren ist stabil

Zeitaufwand: Proportional zu N + R, wobei R Grösse des
Alphabets ist

Speicher: Proportional zu N + R (aux-Array und count Array)

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

LSD-Sortierverfahren

Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)

Funktioniert, da Sortierung stabil ist

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

LSD-Sortierverfahren

N = len(a); aux = [None] * N ; d = numDigits - 1

while d >= 0:

count = [0] * (alphabet.radix () + 1)

for i in range(0, N):

indexOfcharAtPosdInA = alphabet.toIndex(a[i][d])

count[indexOfcharAtPosdInA + 1] += 1

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

for i in range(0, N):

indexOfCharAtPosdInA = alphabet.toIndex(a[i][d])

countForChar = count[indexOfCharAtPosdInA]

aux[countForChar] = a[i]

count[indexOfCharAtPosdInA] += 1

for i in range(0, N):

a[i] = aux[i]

d -= 1

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Quicksort

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Erinnerung: Quicksort

Wähle Pivot Element

Partitioniere Array

Rekursion auf linkes und rechtes Teilarray

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Quicksort: Gleiche Schlüssel

Was passiert bei vielen gleichen Schlüsseln?

Unnötige Partitionierung von gleichen Schlüsseln.

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Quicksort: Gleiche Schlüssel

Was passiert bei vielen gleichen Schlüsseln?

Unnötige Partitionierung von gleichen Schlüsseln.

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

3-Wege Quicksort

Gleiche Schlüssel sind bereits sortiert.

Kein rekursiver Aufruf mehr nötig.

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Quicksort für Strings

3-Wege Quicksort per
Buchstabe

Bei gleichen
Anfangsbuchstaben,
vergleiche nächsten
Buchstaben.

Quelle: Sedgewick & Wayne,
Algorithmen, Abbildung 5.16

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Quicksort für Strings

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Laufzeit

Theorem

Um ein Array von N zufälligen Strings zu sortieren, benötigt der
3-Weg-Quicksort für Strings im Durchschnitt ∼ 2NlnN
Zeichenvergleiche.

Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

Aber: Wir haben Zeichenvergleiche und nicht
Schlüsselvergleiche

Motivation Strings Sortieren von Strings LSD-Sortierverfahren Quicksort

Implementation

Jupyter Notebooks: Stringsort.ipynb

	Motivation
	

	Strings
	

	Sortieren von Strings
	

	LSD-Sortierverfahren
	

	Quicksort
	

