Algorithmen und Datenstrukturen

D1. Sortieren von Strings

Gabi Roger und Marcel Liithi
Universitat Basel

16. Mai 2019

Ubersicht

—| Sortieren |

Komplexitats-
analyse

_ " | Datenstrukturen

—| Suchen | Suchen (Tries)
—{ Graphen |

Kompression

verfahren

Sortieren von Strings

String algorithmen oder generische Algorithmen?

m Alle Algorithmen zum Sortieren / Suchen wurden iiber
beliebige Schliissel definiert.

m Konnen direkt auf Strings angewendet werden.

m Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schliissel wird nicht ausgenutzt.

Kénnen wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?

Heutiges Programm

m Motivation
m Abstraktion: Alphabet
m LSD-Sort

m Quicksort fiir Strings

Repetition und Erweiterung bereits bekannter Konzepte J

Motivation
©0000

Motivation

Motivation Strings Sortieren von Strings SD-S verfahren

00000

Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Reprasentation
von Informationen

Programmcode
Datenreprasentation im Web (HTML / Json / CSS)

Kommunikation (E-Mail, Textmessages)

Gensequenzen

Motivation S S von Strings SD-S verfahren

[e]e] le]e}

Anwendung 1: Programmcode

Programme sind Strings J

m Compiler / Interpreter interpretieren und transformieren
Strings in ausfiihrbare Programme

m |IDEs bietet Funktionalitat zur effizienten Suche und
Manipulation von Code

m Selektion von allen Wértern, die Suchergebniss entsprechen
m Suche nach reguldrem Ausdriicken
m Refactoring

Motivation S S Sortieren von Strings SD-S verfahren

[e]e]e] o}

Anwendung 2: Informations und Kommunikationssysteme

Text ist wichtigste Reprasentation fiir Information und
Kommunikation im Internet

m E-Mail / SMS / ...: Text wird von einem an anderen Ort
transferiert.

m Webbrowser: interpretiert CSS und HTML und stellt diesen
formatiert dar.

m Suchmaschine: Muss grosse Mengen an Text effizient
indizieren und durchsuchen.

Motivation S S Sortieren von Strings SD-S rverfahren

[e]e]ee] }

Anwendung 3: Bioinformatik

The digital information that underlies biochemistry, cell biology,
and development can be represented by a simple string of G's, A's,
T's, and C's. This string is the root data structure of an organism's
biology.

Maynard Olson - A time to sequence

m Analyse des Genoms eines Organismus

m Beispiel: Genom Mensch besteht ist String aus ca.
3'000'000'000 Zeichen

Beispielprobleme
m Suchen von Sequenzen in grossen Datenbanken
m Vergleichen von (Sub)-Sequenzen von Strings
m Finden von hiufig auftretenden Mustern

Strings
[eJelele]

Strings

Strings

Strings

Endliche Folge von Zeichen (Character) I

m Strings sind unveranderlich (immutable). Einmal erzeugt
kénnen Strings nicht mehr verandert werden.

m Ideale Schliissel fiir Symboltabellen

m Intern haufig als Array von Zeichen implementiert.

0 1 2 3 4 5 6 7 8 9 10 11
AT T A CK A TD A W N

Strings Sortieren von Strings

[e]e] le]e}

Characters

Friiher:
m 7 Bit Zeichensatz (ASCII)
m 8 Bit Zeichensatz (extended ASCII)
Heute:
m 8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python

m Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

m Python kennt keinen Charactertyp. Ausdruck s[i] ist (UTF-8)
String der Lange 1.

otivation Strings
5 0000

Abstraktion: Alphabet

m Unicode umfasst 1'112'064 Zeichen.

m Kleineres Alphabet reicht fiir viele Anwendungen aus

Name Radix (R) Bits (log,(R)) Zeichen

BINARY 2 1 01

DNA 4 2 ACGT
LOWERCASE 26 5 a-z

UPPERCASE 26 5 A-Z

ASCII 128 7 ASCII Characters
EXTENDED_ASCII | 256 8 EXTENDED_ASCII
UNICODE 1'114'112 21 UNICODE

Strings

[e]e]ee] }

Alphabet

Abstraktion Alphabet erlaubt uns Code unabhingig vom benutzten
Alphabet zu schreiben. J

class Alphabet:
def __init__(s : Listl[char])
def toChar(index : Int) -> char
def toIndex(c : Char) -> int
def contains(c : Char) -> boolean

def R() -> int # Radicz

Sortieren von Strings

0e00

Sortieralgorithmen

Algorithmus

Selectionsort
Insertionsort
Mergesort
Quicksort
Heapsort

Laufzeit O(+)
best/avg./worst

n?

n/n?/n?

nlogn
nlogn/nlog n/n?
nlogn

Sortieren von Strings

Speicherbedarf O(-)
best/avg. /worst

1

1

n

log n/logn/n

1

verfahren

stabil

nein
ja
ja
nein
nein

Sortieren von Strings SD-S verfahren

0e00

Sortieralgorithmen

Algorithmus Laufzeit O(+) Speicherbedarf O(-) stabil
best/avg./worst best/avg. /worst

Selectionsort ~ n? 1 nein

Insertionsort ~ n/n?/n? 1 ja

Mergesort nlogn n ja

Quicksort nlogn/nlogn/n®* logn/logn/n nein

Heapsort nlogn 1 nein

O(nlog n) ist beweisbar der lower bound fiir allgemeine,
vergleichsbasierte, Sortierverfahren.

Sortieren von Strings

m Zeichen in Alphabet sind geordnet.
m Sortierung kann durch " Fachverteilen” hergestellt werden
m Vergleiche: Radixsort

Erinnerung: Radixsort

m Zahlen: z.B. 763, 983, 96, 286, 462
m Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

m Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

m Wiederhole mit zweitletzter Stelle, etc.

m Grundlage LSD-Sortierverfahren

Sortieren von Strings

[eJe]e])

Idee 2

m Wie viele Character Vergleiche miissen durchgefiihrt werden
um zwei Strings zu vergleichen?

0 1 2 3 4 5 6

p r e f e t c
p r e f i x e

m Worst case: Proportional zur Stringlange

m Aber; Oft sublinear

7
h
s

Wir kénnen Sortieralgorithmen so schreiben, dass sie Vergleiche
auf einzelne Zeichen reduzieren.
m Grundlage von 3-Wege Quicksort fiir Strings

LSD-Sortierverfahren

®0000000

LSD-Sortierverfahren

LSD-Sortierverfahren

O®000000

LSD-Sortierverfahren (1 Zeichen)

m Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl zu sortierender Zeichen
count = [0] * (alphabet.radix() + 1)
aux = [None] * N

Zeichen 2zaehlen

for i in range (0, N):
index0fchar = alphabet.toIndex(al[il)
count [index0fchar + 1] += 1

Kummulative Summe
for r in range (0, alphabet.radix()):
count [r+1] += count[r]

Verteilen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(al[il])
countForChar = count[indexOfchar]
aux [countForChar] = al[i]
count [index0fchar] += 1

LSD-Sortierverfahren

[e]e] le]e]elele)

LSD-Sortierverfahren (1 Zeichen)

N = len(a) # Anzahl zu sortierender Zeichen in array a
count = [0] * (alphabet.radix() + 1)

Zeichen Zaehlen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(al[i])
count [index0fchar + 1] += 1

W
BNENDN
e~
all d a ¢ f f b d b f b e a countf] 0 2 3 1 2 1 3

01 2 3 4 5 6 7 8 9 10 11 ///
bf [« [

ren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

Kummulative Summe
for r in range(0, alphabet.radix()):
count [r+1] += count[r]

‘ #<a N\#<c N\#<e ‘\ EI\

count[r] 0 2 5 6 8 9 12

3 Schliissel >=2<5 = ad L N
-> Position 2, 3, 4

"~ 2Schlissel >=6<8

#<b /#<d /#<f -> Position 6, 7

LSD-Sortierverfahren

[e]o]e]e] lelele)

LSD-Sortierverfahren (1 Zeichen)

Verteilen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(al[i])
countForChar = count[index0fchar]
aux [countForChar] = ali]
count [index0fchar] += 1

ail d a ¢ f f b d b f b e a

01 2 345 6 789 1011

count[r] 0 2 5 6 8 9 12

——
auxii a a b b b ¢ d d e f f f

o1 2 3 4 5 6 7 8 9 10 11

eren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

m Verfahren ist stabil

m Zeitaufwand: Proportional zu N + R, wobei R Grosse des
Alphabets ist

m Speicher: Proportional zu N + R (aux-Array und count Array)

LSD-Sortierverfahren

[e]o]e]e]e]e] Jo)

LSD-Sortierverfahren

sortieren (d=2) sortieren (d=1) sortieren (d=0)
dla |b dla |b dla |b alc |e
a|d|d cla |b cla|b a|d |d
cla|b elb |b fla|d bla |d
fla|d <« |a|d |d bla |d ble |d
fle |e “|fla |d d|a |d bla |e
bla |d ~|bla [d e|lb |b cla|b
dla|d|__ ,|d|a |d alc |e dla |b
ble |e L |fle |d a|d |d dla |d
fle|d L |bje|d fle|d e|lb |b
ble |d fle|e ble |d fla|d
e|lb |b ble |e fle|e fle|d
alc |e alc |e ble |e fle|e

Stabil — Pfeile kreuzen sich nicht

m Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)

m Funktioniert, da Sortierung stabil ist

LSD-Sortierverfahren

O000000e

LSD-Sortierverfahren

N = len(a); aux = [None] * N ; d = numDigits - 1
while d >= O0:
count = [0] * (alphabet.radix() + 1)

for i in range (0, N):
indexOfcharAtPosdInA = alphabet.toIndex(ali][d])
count [index0OfcharAtPosdInA + 1] += 1

for r in range (0, alphabet.radix()):
count [r+1] += count[r]

for i in range (0, N):
index0fCharAtPosdInA = alphabet.toIndex(ali][d])
countForChar = count[index0fCharAtPosdInAl]
aux [countForChar] = alil
count [index0fCharAtPosdInA] += 1

for i in range (0, N):
alil = aux[i]

Quicksort
©0000000

Quicksort

en von Strings SD-S verfahren Quicksort

0O@000000

0 1 2 3 4 5 6 7 8
Q U | C K S (0] R T
P
pivot
0 1 2 3 4 5 6 7 8
I C K 0] Q U S R T

f ” ‘ “|“
< pivot > pivot

m Waihle Pivot Element
m Partitioniere Array

m Rekursion auf linkes und rechtes Teilarray

von Strings SD verfahren Quicksort
00®00000

Quicksort: Gleiche Schlissel

0 1 2 3 4 5 6 7 8 9 10
_~ A B R A C A D A B R A
L
0 1 2 3 4 5 6 7 8 9 10
A A A A B R C D B ‘R A

[I
< pivot > pivot

m Was passiert bei vielen gleichen Schliisseln?

n von Strings SD-S ahre Quicksort
00®00000

Quicksort: Gleiche Schlissel

0 1 2 3 4 5 6 7 8 9 10

_~ A B R A C A D A B R A
HlEEEEEEEn

0 1 2 3 4 5 6 7 8 9 10

< pivot > pivot

m Was passiert bei vielen gleichen Schliisseln?

m Unnétige Partitionierung von gleichen Schliisseln.

n von Strings SD-S verfahren Quicksort

[e]e]e] le]elele)

3-Wege Quicksort

/AW W TD\ TW
iM Caa s

T |
< pivot = pivot > pivot

plvot

m Gleiche Schliissel sind bereits sortiert.
m Kein rekursiver Aufruf mehr notig.

erfahren Quicksort

[e]e]e]e] Jelele)

Quicksort fiir Strings

sortiert Teilarrays
rekursiv (ﬂlngCHOUIUIL’H

das erste Zeichen
vom Gleich-Teilarray)

verwendet ersten Zeichenwert,
um in Kleiner-, Gleich- und
Grofer-Teilarrays zu
partitionieren

m 3-Wege Quicksort per ,
Buchstabe 5
m Bei gleichen -
Anfangsbuchstaben, -
vergleiche nachsten =
Buchstaben.

<<<

<< -

Quicksort fiir Strings

B A o w0 w» n

(7 T RV I R Vs)

graue Balken reprisentieren

b a are leere Teilarrays

a b by

S €| al h[::: €|

S €| al h e[::}
S €| I 1(____w s

R B SO 6 S o A e
s h €| she

s h €| she

s u €| ﬁ;;;;;} shells

s h ore""] shore

s h surely

[t 1 h e the

't t ‘ h‘ ‘ e the

Quicksort
0000

zwei weitere Durchliufe,
bis das Ende erreicht wird

1 1
1 1
sells

sells

sells sells

keine rekursiven Aufrufe
(Ende des Strings)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18

ierverfahren

Quicksort

Laufzeit

[e]e]e]e]e]e] Jo)

Um ein Array von N zufilligen Strings zu sortieren, benétigt der
3-Weg-Quicksort fiir Strings im Durchschnitt ~ 2NInN
Zeichenvergleiche.

m Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

m Aber: Wir haben Zeichenvergleiche und nicht
Schliisselvergleiche

Quicksort
0000000

Implementation

ZJupyter untitied wses

File Edt View Inset Cel Kemel Help # | Python [Roo] O
B+ x AMB A v N EC coe = Cellober & # O

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline
Papulating the interactive namespace from numpy and matplotlib

1n [7]: plot(linspace(0, 1000), (linspace (0

OuL[7]: [<matplotlib.lines.Lire2D at 0x29ds

1000000

800000

600000

400000

200000

20 %0 EQ %0 000

Jupyter Notebooks: Stringsort.ipynb

	Motivation
	

	Strings
	

	Sortieren von Strings
	

	LSD-Sortierverfahren
	

	Quicksort
	

