Algorithmen und Datenstrukturen

D1. Sortieren von Strings

Gabi Roger und Marcel Liithi

Universitat Basel

16. Mai 2019

Algorithmen und Datenstrukturen
16. Mai 2019 — D1. Sortieren von Strings

D1.1 Motivation

D1.2 Strings

D1.3 Sortieren von Strings
D1.4 LSD-Sortierverfahren

D1.5 Quicksort

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 1/35
Ubersicht
—{ Sortieren ‘
Komplexitats-
analyse
_ Datenstrukturen
—{ Suchen ‘ Suchen (Tries)
—{ Graphen ‘
B
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 3/35

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 2 /35
String algorithmen oder generische Algorithmen?
» Alle Algorithmen zum Sortieren / Suchen wurden iiber
beliebige Schliissel definiert.
» Kodnnen direkt auf Strings angewendet werden.
» Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schliissel wird nicht ausgenutzt.
Frage
Kénnen wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 4 / 35

Heutiges Programm

> Motivation
> Abstraktion: Alphabet
» LSD-Sort
» Quicksort fiir Strings

Repetition und Erweiterung bereits bekannter Konzepte

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 5 /35

D1. Sortieren von Strings

D1.1 Motivation

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019

Motivation

6/

35

D1. Sortieren von Strings Motivation

Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Reprasentation
von Informationen

» Programmcode
» Datenreprasentation im Web (HTML / Json / CSS)
» Kommunikation (E-Mail, Textmessages)

» Gensequenzen

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 7 /35

D1. Sortieren von Strings

Anwendung 1: Programmcode

Programme sind Strings

» Compiler / Interpreter interpretieren und transformieren
Strings in ausfiihrbare Programme
» IDEs bietet Funktionalitadt zur effizienten Suche und
Manipulation von Code
> Selektion von allen Wértern, die Suchergebniss entsprechen

» Suche nach reguldrem Ausdriicken
» Refactoring

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019

Motivation

g /

D1. Sortieren von Strings

Motivation

Anwendung 2: Informations und Kommunikationssysteme

Text ist wichtigste Reprasentation fiir Information und
Kommunikation im Internet

» E-Mail / SMS / ...: Text wird von einem an anderen Ort
transferiert.

» Webbrowser: interpretiert CSS und HTML und stellt diesen
formatiert dar.

» Suchmaschine: Muss grosse Mengen an Text effizient
indizieren und durchsuchen.

D1. Sortieren von Strings

Anwendung 3: Bioinformatik

The digital information that underlies biochemistry, cell biology,
and development can be represented by a simple string of G's, A's,
T's, and C's. This string is the root data structure of an organism'’s

biology.

Maynard Olson - A time to sequence

» Analyse des Genoms eines Organismus
» Beispiel: Genom Mensch besteht ist String aus ca.
3'000'000'000 Zeichen
Beispielprobleme
» Suchen von Sequenzen in grossen Datenbanken
» Vergleichen von (Sub)-Sequenzen von Strings
» Finden von hiufig auftretenden Mustern
> ..

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen

16. Mai 2019 10 /

Motivation

35

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 9 /35
D1. Sortieren von Strings Strings
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 11 /35

D1. Sortieren von Strings

Strings

String
Endliche Folge von Zeichen (Character)

» Strings sind unverdnderlich (immutable). Einmal erzeugt
kdnnen Strings nicht mehr verandert werden.

> Ideale Schliissel fiir Symboltabellen
» Intern hiufig als Array von Zeichen implementiert.

0 1 2 3 4 5
AT T A C K

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 12

Strings

D1. Sortieren von Strings Strings

Characters

Friiher:
» 7 Bit Zeichensatz (ASCII)
» 8 Bit Zeichensatz (extended ASCII)
Heute:
» 8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python
» Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

» Python kennt keinen Charactertyp. Ausdruck s]i] ist (UTF-8)
String der Lange 1.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 13 / 35

D1. Sortieren von Strings

Abstraktion: Alphabet

» Unicode umfasst 1'112'064 Zeichen.
> Kleineres Alphabet reicht fiir viele Anwendungen aus

Name Radix (R) Bits (log,(R)) Zeichen

BINARY 2 1 01

DNA 4 2 ACGT
LOWERCASE 26 5 a-z
UPPERCASE 26 5 A-Z

ASCII 128 7 ASCII Characters
EXTENDED_ASCII | 256 8 EXTENDED_ASCII
UNICODE 1'114'112 21 UNICODE

M. Liithi (Universitit Basel)

Algorithmen und Datenstrukturen

Strings

16. Mai 2019 14 / 35

D1. Sortieren von Strings Strings

Alphabet

Abstraktion Alphabet erlaubt uns Code unabhangig vom benutzten
Alphabet zu schreiben.

class Alphabet:
def __init__(s List [char])
def toChar(index : Int) -> char
def toIndex(c : Char) -> int
def contains(c : Char) -> boolean
def R() -> int # Radiz

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 15 / 35

D1. Sortieren von Strings

D1.3 Sortieren von Strings

M. Liithi (Universitdt Basel)

Algorithmen und Datenstrukturen

Sortieren von Strings

16. Mai 2019 16 / 35

D1. Sortieren von Strings Sortieren von Strings

Sortieralgorithmen

Algorithmus Laufzeit O(+) Speicherbedarf O(-) stabil
best/avg./worst best/avg./worst

Selectionsort n? 1 nein

Insertionsort ~ n/n?/n? 1 ja

Mergesort nlogn n ja

Quicksort nlogn/nlogn/n®> logn/logn/n nein

Heapsort nlogn 1 nein

O(nlog n) ist beweisbar der lower bound fiir allgemeine,
vergleichsbasierte, Sortierverfahren.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 17 / 35

D1. Sortieren von Strings Sortieren von Strings

Idee 1

» Zeichen in Alphabet sind geordnet.
» Sortierung kann durch "Fachverteilen” hergestellt werden
» Vergleiche: Radixsort

Erinnerung: Radixsort
» Zahlen: z.B. 763, 983, 96, 286, 462

» Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763 96
983 286

» Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

> Wiederhole mit zweitletzter Stelle, etc.

» Grundlage LSD-Sortierverfahren

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 18 / 35

D1. Sortieren von Strings Sortieren von Strings

Idee 2

> Wie viele Character Vergleiche miissen durchgefiihrt werden
um zwei Strings zu vergleichen?

01 2 3 45 6 7
p r e f e t c h
p r e f i x e s

» Worst case: Proportional zur Stringldnge
> Aber: Oft sublinear

Wir kdnnen Sortieralgorithmen so schreiben, dass sie Vergleiche
auf einzelne Zeichen reduzieren.

» Grundlage von 3-Wege Quicksort fiir Strings

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 19 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

D1.4 LSD-Sortierverfahren

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 20 / 35

D1. Sortieren von Strings

LSD-Sortierverfahren (1 Zeichen)

> Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl zu sortierender Zeichen
count = [0] * (alphabet.radix() + 1)
aux = [Nonel * N

Zeichen zaehlen

for i in range(0, N):
index0Ofchar = alphabet.toIndex(alil)
count [index0Ofchar + 1] += 1

Kummulative Summe
for r in range (0, alphabet.radix()):
count [r+1] += count[r]

Verteilen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil])
countForChar = count[index0fchar]
aux [countForChar] = al[il
count [indexOfchar] += 1

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019

LSD-Sortierverfahren

D1. Sortieren von Strings

LSD-Sortierverfahren (1 Zeichen)

N = len(a) # Anzahl zu sortierender Zeichen in array a
count = [0] * (alphabet.radix() + 1)

Zeichen Zaehlen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil)
count [index0Ofchar + 1] += 1

oNENoN
o
ail d a c f f b db f b e a count(r] 0231213

01 2 3 4 5 6 7 8 9 10 11 ///
Lf [« [7]

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 22 /

D1. Sortieren von Strings

LSD-Sortierverfahren (1 Zeichen)

Kummulative Summe
for r in range (0, alphabet.radix()):
count [r+1] += count [r]

‘ #<a N\#<cN\#<e ‘\ D\

count[r] 0 2 5 6 8 9 12
3 Schlussel >=2<5 - 1T x_

Position 2, 3, 4 / . 2Schlissel >=6< 8

#<b #<d #<f -> Position 6, 7

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019

LSD-Sortierverfahren

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

Verteilen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil)
countForChar = count[index0fchar]
aux [countForChar] = alil
count [indexOfchar] += 1

ail d a ¢ f f b d b f b e a

01 2 3 4 5 6 7 8.9 1011
count[r] 0 2 5 6 8 9 12
.

auxliij a a b b b ¢ d d e f f f

01 2 3 4 5 6 7 8 9 10 11

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 24 /

LSD-Sortierverfahren

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

» Verfahren ist stabil

» Zeitaufwand: Proportional zu N + R, wobei R Grosse des
Alphabets ist

» Speicher: Proportional zu N + R (aux-Array und count Array)

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 25 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren

sortieren (d=2) sortieren (d=1) sortieren (d=0)
dla |b dla |b dl{a |[b alc |e
a|d |d cla |b cla |b a|d |d
cla |b e|lb |b fla|d bla |d
fla|d aja|d |d bfa |d ble |d
fle |e “lfla|d dla |d bla |e
bla |d *|bla [d e|b |b cla |b
dla |[d ,|dla |d alc |e dla [b
ble |e L |fle |d a|d [d dl|a |d
fle |d . |ble |d fle|d e|b |b
ble |d fle|e ble |d fla|d
e|b |b ble |e fle|e fle|d
alc |e alc |e ble |e fle|e

Stabil — Pfeile kreuzen sich nicht

> Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)
» Funktioniert, da Sortierung stabil ist

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 26 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren

N = len(a); aux = [Nome] * N ; d = numDigits - 1
while d >= O0:
count = [0] * (alphabet.radix() + 1)

for i in range(0, N):
index0fcharAtPosdInA = alphabet.toIndex(alil[d])
count [index0OfcharAtPosdInA + 1] += 1

for r in range (0, alphabet.radix()):
count [r+1] += count[r]

for i in range(0, N):
index0fCharAtPosdInA = alphabet.toIndex(alil[d])
countForChar = count[index0fCharAtPosdInA]
aux [countForChar] = al[il
count [index0fCharAtPosdInA]l += 1

for i in range (0, N):
alil = aux[il

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 27 / 35

D1. Sortieren von Strings Quicksort

D1.5 Quicksort

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 28 / 35

D1. Sortieren von Strings

Erinnerung: Quicksort

Quicksort

pivot

0 1 2 3 4 5 6 7 8
a u | C K S 0] R T
0 1 2 3 4 5 6 7 8
I C K 0] Q V) S R T
| ‘r "v‘
< pivot > pivot

» Waihle Pivot Element
> Partitioniere Array
» Rekursion auf linkes und rechtes Teilarray

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen

16. Mai 2019 29 / 35

D1. Sortieren von Strings

3-Wege Quicksort

ﬂ . .
uﬂAb\
T |
< pivot = pivot

> pivot

» Gleiche Schlissel sind bereits sortiert.
» Kein rekursiver Aufruf mehr nétig.

M. Liithi (Universitdt Basel) Algorithmen und Datenstrukturen

Quicksort

LJ L

16. Mai 2019 31 /35

D1. Sortieren von Strings Quicksort
Quicksort: Gleiche Schlissel
0 1 2 3 4 5 6 7 8 9 10
-
0 1 2 3 4 5 6 7 8 9 10
A A A A B R C D B R A
|
< pivot > pivot
» Was passiert bei vielen gleichen Schliisseln?
» Unnétige Partitionierung von gleichen Schliisseln.
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 30 / 35
D1. Sortieren von Strings Quicksort

Quicksort fiir Strings

) sortiert Teilarrays
verwendet ersten Zeichenwert,
um in Kleiner-, Gleich- und
Grofer-Teilarrays zu
partitionieren

das erste Zeichen

vom Gleich-Teilarray)

rekursiv (ausgenommen

> 3-Wege Quicksort per
Buchstabe -

. . v 4

> Bei gleichen - !

Anfangsbuchstaben, y v
vergleiche nichsten
Buchstaben. =
>V

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 32 /35

Algorithmen. Abbildune 5.16

D1. Sortieren von Strings Quicksort

Quicksort fiir Strings

zwei weitere Durchliufe,

s b a are grave Ilifl’,rl:rg"l"aﬁgrrzf;;,rmm’ bis das Ende erreicht wird
s a b| by

s S €| a ﬂ \

b S| e aj h[: € 1 1
It S| e al h e|:| 1|:| 1|:|
s S e il 1’—\ s sells sells

s s el 1 1 SD sells sells

It s h €| she

s s h €| she

s S| u € I shells keine rekursiven Aufrufe

A o h 5 shore (Ende des Strings)

a S| h surely

s [t 1 h € the

s It t ‘ h‘ | €| the

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 33 /35

D1. Sortieren von Strings

Laufzeit

Theorem

Um ein Array von N zufilligen Strings zu sortieren, benétigt der
3-Weg-Quicksort fiir Strings im Durchschnitt ~ 2NInN
Zeichenvergleiche.

» Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

> Aber: Wir haben Zeichenvergleiche und nicht
Schliisselvergleiche

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019

Quicksort

34 /35

D1. Sortieren von Strings Quicksort

Implementation

ZJupyter Untited wosmea
File Edt View Inset Cell Kemel Help # | Python [Root] ©

B+ 3 @B 4V M EC code | = Celfoobar @& & @

Algorithmen und Datenstrukturen

Interaktive Experimente

0ut[7]: [<matplotlib.lines.Line2d at

1000000

800000

0000

400000

200000

0 w0 &0 0 000

Jupyter Notebooks: Stringsort.ipynb

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 35 /35

	Motivation
	

	Strings
	

	Sortieren von Strings
	

	LSD-Sortierverfahren
	

	Quicksort
	

