
Algorithmen und Datenstrukturen
D1. Sortieren von Strings

Gabi Röger und Marcel Lüthi

Universität Basel

16. Mai 2019

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 1 / 35

Algorithmen und Datenstrukturen
16. Mai 2019 — D1. Sortieren von Strings

D1.1 Motivation

D1.2 Strings

D1.3 Sortieren von Strings

D1.4 LSD-Sortierverfahren

D1.5 Quicksort

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 2 / 35

Übersicht

A&D

Sortieren

Komplexitäts-
analyse

Fundamentale
Datenstrukturen

Suchen

Graphen

Strings

Sortieren

Suchen (Tries)

Kompression

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 3 / 35

String algorithmen oder generische Algorithmen?

I Alle Algorithmen zum Sortieren / Suchen wurden über
beliebige Schlüssel definiert.
I Können direkt auf Strings angewendet werden.

I Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schlüssel wird nicht ausgenutzt.

Frage

Können wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 4 / 35

Heutiges Programm

I Motivation

I Abstraktion: Alphabet

I LSD-Sort

I Quicksort für Strings

Repetition und Erweiterung bereits bekannter Konzepte

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 5 / 35

D1. Sortieren von Strings Motivation

D1.1 Motivation

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 6 / 35

D1. Sortieren von Strings Motivation

Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Repräsentation
von Informationen

I Programmcode

I Datenrepräsentation im Web (HTML / Json / CSS)

I Kommunikation (E-Mail, Textmessages)

I Gensequenzen

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 7 / 35

D1. Sortieren von Strings Motivation

Anwendung 1: Programmcode

Programme sind Strings

I Compiler / Interpreter interpretieren und transformieren
Strings in ausführbare Programme

I IDEs bietet Funktionalität zur effizienten Suche und
Manipulation von Code
I Selektion von allen Wörtern, die Suchergebniss entsprechen
I Suche nach regulärem Ausdrücken
I Refactoring

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 8 / 35

D1. Sortieren von Strings Motivation

Anwendung 2: Informations und Kommunikationssysteme

Text ist wichtigste Repräsentation für Information und
Kommunikation im Internet

I E-Mail / SMS / ...: Text wird von einem an anderen Ort
transferiert.

I Webbrowser: interpretiert CSS und HTML und stellt diesen
formatiert dar.

I Suchmaschine: Muss grosse Mengen an Text effizient
indizieren und durchsuchen.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 9 / 35

D1. Sortieren von Strings Motivation

Anwendung 3: Bioinformatik

The digital information that underlies biochemistry, cell biology,
and development can be represented by a simple string of G’s, A’s,
T’s, and C’s. This string is the root data structure of an organism’s
biology.

Maynard Olson - A time to sequence

I Analyse des Genoms eines Organismus
I Beispiel: Genom Mensch besteht ist String aus ca.

3’000’000’000 Zeichen

Beispielprobleme

I Suchen von Sequenzen in grossen Datenbanken

I Vergleichen von (Sub)-Sequenzen von Strings

I Finden von häufig auftretenden Mustern

I ...

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 10 / 35

D1. Sortieren von Strings Strings

D1.2 Strings

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 11 / 35

D1. Sortieren von Strings Strings

Strings

String

Endliche Folge von Zeichen (Character)

I Strings sind unveränderlich (immutable). Einmal erzeugt
können Strings nicht mehr verändert werden.
I Ideale Schlüssel für Symboltabellen

I Intern häufig als Array von Zeichen implementiert.

0 1 2 3 4 5 6 7 8 9 10 11

A T T A C K A T D A W N

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 12 / 35

D1. Sortieren von Strings Strings

Characters

Früher:

I 7 Bit Zeichensatz (ASCII)

I 8 Bit Zeichensatz (extended ASCII)

Heute:

I 8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python

I Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

I Python kennt keinen Charactertyp. Ausdruck s[i] ist (UTF-8)
String der Länge 1.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 13 / 35

D1. Sortieren von Strings Strings

Abstraktion: Alphabet

I Unicode umfasst 1’112’064 Zeichen.

I Kleineres Alphabet reicht für viele Anwendungen aus

Name Radix (R) Bits (log2(R)) Zeichen
BINARY 2 1 0 1
DNA 4 2 A C G T
LOWERCASE 26 5 a - z
UPPERCASE 26 5 A-Z
ASCII 128 7 ASCII Characters
EXTENDED ASCII 256 8 EXTENDED ASCII
UNICODE 1’114’112 21 UNICODE

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 14 / 35

D1. Sortieren von Strings Strings

Alphabet

Abstraktion Alphabet erlaubt uns Code unabhängig vom benutzten
Alphabet zu schreiben.

class Alphabet:

def __init__(s : List[char])

def toChar(index : Int) -> char

def toIndex(c : Char) -> int

def contains(c : Char) -> boolean

def R() -> int # Radix

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 15 / 35

D1. Sortieren von Strings Sortieren von Strings

D1.3 Sortieren von Strings

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 16 / 35

D1. Sortieren von Strings Sortieren von Strings

Sortieralgorithmen

Algorithmus Laufzeit O(·) Speicherbedarf O(·) stabil
best/avg./worst best/avg./worst

Selectionsort n2 1 nein
Insertionsort n/n2/n2 1 ja
Mergesort n log n n ja
Quicksort n log n/n log n/n2 log n/log n/n nein
Heapsort n log n 1 nein

O(n log n) ist beweisbar der lower bound für allgemeine,
vergleichsbasierte, Sortierverfahren.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 17 / 35

D1. Sortieren von Strings Sortieren von Strings

Idee 1

I Zeichen in Alphabet sind geordnet.
I Sortierung kann durch ”Fachverteilen”hergestellt werden

I Vergleiche: Radixsort

Erinnerung: Radixsort
I Zahlen: z.B. 763, 983, 96, 286, 462

I Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

I Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

I Wiederhole mit zweitletzter Stelle, etc.

I Grundlage LSD-Sortierverfahren

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 18 / 35

D1. Sortieren von Strings Sortieren von Strings

Idee 2

I Wie viele Character Vergleiche müssen durchgeführt werden
um zwei Strings zu vergleichen?

0 1 2 3 4 5 6 7

p r e f e t c h
p r e f i x e s

I Worst case: Proportional zur Stringlänge

I Aber: Oft sublinear

Wir können Sortieralgorithmen so schreiben, dass sie Vergleiche
auf einzelne Zeichen reduzieren.

I Grundlage von 3-Wege Quicksort für Strings

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 19 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

D1.4 LSD-Sortierverfahren

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 20 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

I Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl zu sortierender Zeichen

count = [0] * (alphabet.radix () + 1)

aux = [None] * N

Zeichen zaehlen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

count[indexOfchar + 1] += 1

Kummulative Summe

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

Verteilen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

countForChar = count[indexOfchar]

aux[countForChar] = a[i]

count[indexOfchar] += 1

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 21 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

N = len(a) # Anzahl zu sortierender Zeichen in array a

count = [0] * (alphabet.radix () + 1)

Zeichen Zaehlen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

count[indexOfchar + 1] += 1

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 22 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

Kummulative Summe

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 23 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

Verteilen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

countForChar = count[indexOfchar]

aux[countForChar] = a[i]

count[indexOfchar] += 1

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 24 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

I Verfahren ist stabil

I Zeitaufwand: Proportional zu N + R, wobei R Grösse des
Alphabets ist

I Speicher: Proportional zu N + R (aux-Array und count Array)

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 25 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren

I Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)

I Funktioniert, da Sortierung stabil ist

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 26 / 35

D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren

N = len(a); aux = [None] * N ; d = numDigits - 1

while d >= 0:

count = [0] * (alphabet.radix () + 1)

for i in range(0, N):

indexOfcharAtPosdInA = alphabet.toIndex(a[i][d])

count[indexOfcharAtPosdInA + 1] += 1

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

for i in range(0, N):

indexOfCharAtPosdInA = alphabet.toIndex(a[i][d])

countForChar = count[indexOfCharAtPosdInA]

aux[countForChar] = a[i]

count[indexOfCharAtPosdInA] += 1

for i in range(0, N):

a[i] = aux[i]

d -= 1

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 27 / 35

D1. Sortieren von Strings Quicksort

D1.5 Quicksort

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 28 / 35

D1. Sortieren von Strings Quicksort

Erinnerung: Quicksort

I Wähle Pivot Element

I Partitioniere Array

I Rekursion auf linkes und rechtes Teilarray

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 29 / 35

D1. Sortieren von Strings Quicksort

Quicksort: Gleiche Schlüssel

I Was passiert bei vielen gleichen Schlüsseln?

I Unnötige Partitionierung von gleichen Schlüsseln.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 30 / 35

D1. Sortieren von Strings Quicksort

3-Wege Quicksort

I Gleiche Schlüssel sind bereits sortiert.
I Kein rekursiver Aufruf mehr nötig.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 31 / 35

D1. Sortieren von Strings Quicksort

Quicksort für Strings

I 3-Wege Quicksort per
Buchstabe

I Bei gleichen
Anfangsbuchstaben,
vergleiche nächsten
Buchstaben.

Quelle: Sedgewick & Wayne,
Algorithmen, Abbildung 5.16

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 32 / 35

D1. Sortieren von Strings Quicksort

Quicksort für Strings

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 33 / 35

D1. Sortieren von Strings Quicksort

Laufzeit

Theorem
Um ein Array von N zufälligen Strings zu sortieren, benötigt der
3-Weg-Quicksort für Strings im Durchschnitt ∼ 2NlnN
Zeichenvergleiche.

I Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

I Aber: Wir haben Zeichenvergleiche und nicht
Schlüsselvergleiche

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 34 / 35

D1. Sortieren von Strings Quicksort

Implementation

Jupyter Notebooks: Stringsort.ipynb

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 16. Mai 2019 35 / 35

	Motivation
	

	Strings
	

	Sortieren von Strings
	

	LSD-Sortierverfahren
	

	Quicksort
	

