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String algorithmen oder generische Algorithmen?

» Alle Algorithmen zum Sortieren / Suchen wurden iiber
beliebige Schliissel definiert.

» Konnen direkt auf Strings angewendet werden.

» Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schliissel wird nicht ausgenutzt.

Frage

Kdnnen wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?
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Heutiges Programm

» Motivation
» Abstraktion: Alphabet
» LSD-Sort
» Quicksort fiir Strings

Repetition und Erweiterung bereits bekannter Konzepte

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen

16. Mai 2019

5/



D1. Sortieren von Strings Motivation

D1.1 Motivation
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D1. Sortieren von Strings Motivation

Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Reprasentation
von Informationen

» Programmcode
» Datenreprasentation im Web (HTML / Json / CSS )
» Kommunikation (E-Mail, Textmessages)

> Gensequenzen
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D1. Sortieren von Strings Motivation

Anwendung 1: Programmcode

Programme sind Strings

» Compiler / Interpreter interpretieren und transformieren
Strings in ausfiihrbare Programme

» IDEs bietet Funktionalitdt zur effizienten Suche und
Manipulation von Code

> Selektion von allen Wértern, die Suchergebniss entsprechen
» Suche nach reguldrem Ausdriicken
» Refactoring
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D1. Sortieren von Strings

Motivation

Anwendung 2: Informations und Kommunikationssysteme

Text ist wichtigste Reprasentation fiir Information und
Kommunikation im Internet

» E-Mail / SMS / ...: Text wird von einem an anderen Ort
transferiert.

» Webbrowser: interpretiert CSS und HTML und stellt diesen
formatiert dar.

» Suchmaschine: Muss grosse Mengen an Text effizient
indizieren und durchsuchen.
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D1. Sortieren von Strings Motivation

Anwendung 3: Bioinformatik

The digital information that underlies biochemistry, cell biology,
and development can be represented by a simple string of G's, A's,
T's, and C's. This string is the root data structure of an organism’s
biology.

Maynard Olson - A time to sequence

> Analyse des Genoms eines Organismus

> Beispiel: Genom Mensch besteht ist String aus ca.
3'000'000'000 Zeichen

Beispielprobleme
» Suchen von Sequenzen in grossen Datenbanken
» Vergleichen von (Sub)-Sequenzen von Strings
» Finden von hiufig auftretenden Mustern
> ..
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D1. Sortieren von Strings Strings

D1.2 Strings
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D1. Sortieren von Strings

Strings

String
Endliche Folge von Zeichen (Character)

» Strings sind unveranderlich (immutable). Einmal erzeugt
kdnnen Strings nicht mehr verandert werden.

> Ideale Schliissel fiir Symboltabellen

» Intern haufig als Array von Zeichen implementiert.

0 1 2 3 4 5 6 7 8 9
AT T A CKATD A W N
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D1. Sortieren von Strings

Characters

Friiher:
» 7 Bit Zeichensatz (ASCII)
» 8 Bit Zeichensatz (extended ASCII)
Heute:
» 8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python
» Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

» Python kennt keinen Charactertyp. Ausdruck s]i] ist (UTF-8)
String der Lange 1.
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D1. Sortieren von Strings

Abstraktion: Alphabet

» Unicode umfasst 1'112'064 Zeichen.

» Kleineres Alphabet reicht fiir viele Anwendungen aus

Name Radix (R)  Bits (logy(R))  Zeichen

BINARY 2 1 01

DNA 4 2 ACGT
LOWERCASE 26 5 a-z

UPPERCASE 26 5 A-Z

ASCII 128 7 ASCII Characters
EXTENDED_ASCII | 256 8 EXTENDED_ASCII
UNICODE 1'114'112 21 UNICODE
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D1. Sortieren von Strings Strings

Alphabet

Abstraktion Alphabet erlaubt uns Code unabhangig vom benutzten
Alphabet zu schreiben.

class Alphabet:
def __init__(s : List[char])
def toChar (index : Int) -> char
def toIndex(c : Char) -> int
def contains(c : Char) -> boolean
def R() -> int # Radicz
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D1. Sortieren von Strings Sortieren von Strings

D1.3 Sortieren von Strings
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D1. Sortieren von Strings Sortieren von Strings

Sortieralgorithmen

Algorithmus  Laufzeit O(+) Speicherbedarf O(:) stabil
best/avg./worst best/avg. /worst

Selectionsort ~ n? 1 nein

Insertionsort ~ n/n?/n? 1 ja

Mergesort nlogn n ja

Quicksort nlogn/nlogn/n®> logn/logn/n nein

Heapsort nlogn 1 nein

O(nlog n) ist beweisbar der lower bound fiir allgemeine,
vergleichsbasierte, Sortierverfahren.
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D1. Sortieren von Strings

Idee 1

» Zeichen in Alphabet sind geordnet.
» Sortierung kann durch " Fachverteilen” hergestellt werden
> Vergleiche: Radixsort

Erinnerung: Radixsort
> Zahlen: z.B. 763, 983, 96, 286, 462

» Teile Zahlen nach letzter Stelle auf:

0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

» Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

» Wiederhole mit zweitletzter Stelle, etc.

» Grundlage LSD-Sortierverfahren
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D1. Sortieren von Strings Sortieren von Strings

ldee 2

» Wie viele Character Vergleiche miissen durchgefiihrt werden
um zwei Strings zu vergleichen?

0 1 2 3 4 5 6
p r e f e t c

7
h
p r e f i x e s

» Worst case: Proportional zur Stringlange
» Aber: Oft sublinear

Wir kdnnen Sortieralgorithmen so schreiben, dass sie Vergleiche
auf einzelne Zeichen reduzieren.

» Grundlage von 3-Wege Quicksort fiir Strings
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D1. Sortieren von Strings LSD-Sortierverfahren

D1.4 LSD-Sortierverfahren
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D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

» Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl 2zu sortierender Zeichen
count = [0] * (alphabet.radix() + 1)
aux = [Nonel * N

# Zeichen zaehlen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil)
count [index0fchar + 1] += 1

# Kummulative Summe
for r in range (0, alphabet.radix()):
count [r+1] += count[r]

# Verteilen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil)
countForChar = count[indexOfchar]
aux [countForChar] = alil
count [index0fchar] += 1
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D1. Sortieren von Strings

LSD-Sortierverfahren (1 Zeichen)

LSD-Sortierverfahren

N = len(a) # Anzahl 2u sortierender Zeichen in array a
count = [0] * (alphabet.radix() + 1)

# Zeichen Zaehlen

for i in range (0, N):
index0fchar = alphabet.toIndex(alil)
count [index0fchar + 1] += 1

BNENDN
e ]~
alil d a ¢ f f b d b f b e a countfr] 0/2/3/1/2 1 3

01 2 3 4 5 6 7 8 9 10 11 ///
Lf (o] [
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D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

# Kummulative Summe
for r in range(0, alphabet.radix()):
count [r+1] += count[r]

| #<a N#<c \|#<e ‘\D\

count|r] 0 2 5 6 9 12

3 Schliissel >=2<5 = -
-> Position 2, 3, 4

](\\\\ 2 Schliissel >=6< 8
| #<b | |#<d|[#<f] "> Position 6, 7
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D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

# Verteilen

for i in range (0, N):
index0fchar = alphabet.toIndex(alil)
countForChar = count[index0fchar]
aux [countForChar] = al[il
count [index0fchar] += 1

ail d a ¢ f f b d b f b e a

01 2 345 6 7 8.9 1011

—
count[r] 0 2 5 6 8 9 12

——
aux] a a b b b ¢ d d e f f f

0O 1 2 3 4 5 6 7 8 9 10 11
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D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

» Verfahren ist stabil

» Zeitaufwand: Proportional zu N + R, wobei R Grosse des
Alphabets ist

» Speicher: Proportional zu N + R (aux-Array und count Array)
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D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren

sortieren (d=2) sortieren (d=1) sortieren (d=0)
dla |b dla |b dla |b alc |e
a|d |d cla|b cla|b a|d |d
cla|b elb |b fla|d bla |d
fla|d a|a|d [d bla |d ble |d
fle |e “|fla |d d|a |d bla |e
bla |d *|bla |d e|lb |b cla|b
dla|d|_ ,|d|a |d alc |e dla |b
ble |e ,|fle |d ald |d dja |d
fle|d L |b|e|d fle|d e|lb |b
ble |d fle|e ble |d fla|d
e|lb |b ble |e fle|e fle|d
alc |e alc |e ble |e fle|e

Stabil — Pfeile kreuzen sich nicht

> Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)

» Funktioniert, da Sortierung stabil ist
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D1. Sortieren von Strings

LSD-Sortierverfahren

LSD-Sortierverfahren

N = len(a); aux = [None] * N ; d = numDigits - 1
while d >= O0:
count = [0] * (alphabet.radix() + 1)

for

for

for

for

i in range(0, N):
index0OfcharAtPosdInA = alphabet.toIndex(ali]l[d])
count [index0OfcharAtPosdInA + 1] += 1

r in range (0, alphabet.radix()):
count [r+1] += count[r]

i in range (0, N):

index0fCharAtPosdInA = alphabet.toIndex(alil[d])
countForChar = count[index0fCharAtPosdInAl]

aux [countForChar] = al[il

count [index0fCharAtPosdInA] += 1

i in range(0, N):
alil = aux[i]

M. Liithi (Universitiat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

27 /



D1. Sortieren von Strings Quicksort

D1.5 Quicksort

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 28 / 35



D1. Sortieren von Strings

Erinnerung: Quicksort
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
\ J k J
f |

< pivot = pivot

Quicksort

pivot

» Waihle Pivot Element
» Partitioniere Array

» Rekursion auf linkes und rechtes Teilarray
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D1. Sortieren von Strings

Quicksort: Gleiche Schlissel

/illllllllll

S pivot > plvot

plvot

» Was passiert bei vielen gleichen Schliisseln?

» Unnétige Partitionierung von gleichen Schliisseln.
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D1. Sortieren von Strings Quicksort

3-Wege Quicksort

0 1 2 3 4 5 6 7 8 9 10
S A B R A CoAD A R A
0 1 2 3 4 5 6 7 8 9 10
{ I\ J
o i Y

< pivot = pivot

> pivot

» Gleiche Schlussel sind bereits sortiert.
> Kein rekursiver Aufruf mehr nétig.
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D1. Sortieren von Strings

Quicksort fiir Strings

» 3-Wege Quicksort per
Buchstabe

» Bei gleichen
Anfangsbuchstaben,
vergleiche nachsten
Buchstaben.

M. Liithi (Universitat Basel)

verwendet ersten Zeichenwert,
um in Kleiner-, Gleich- und
Grofer-Teilarrays zu
partitionieren

<v
<v
<v

Algorithmen und Datenstrukturen

sortiert Teilarrays

Quicksort

rekursiv (ausgenommen

das erste Zeichen
vom Gleich-Teilarray)

s <<<

<< -
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D1. Sortieren von Strings

Quicksort fiir Strings

graue Balken reprisentieren

s b a are leere Teilarrays

s a o by

s S o al sea

b s e 2| h[::: €

e s e al h e[::}
s S € L 1(____w s

S S o S o S o A i I
e s h €| she

s s h €| she

s S| u el ﬁ_____1 shells

s 5 h o shore

a s h surely

s E T H €| the

s " t ‘ h‘ ‘ e the

Quicksort

zwei weitere Durchliufe,
bis das Ende erreicht wird

1 1
1 1
sells

sells

sells sells

keine rekursiven Aufrufe
(Ende des Strings)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18
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D1. Sortieren von Strings Quicksort

Laufzeit

Theorem

Um ein Array von N zufilligen Strings zu sortieren, benétigt der
3-Weg-Quicksort fiir Strings im Durchschnitt ~ 2NInN
Zeichenvergleiche.

» Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

» Aber: Wir haben Zeichenvergleiche und nicht
Schliisselvergleiche
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D1. Sortieren von Strings Quicksort

Implementation

ZJupyter untitied wemen

File  Edt View Inset Cell Kemel Help # |Python Rootl O

B+ @B AV M EC Cxe @ Cellobar & & B

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

Tn [7]: plot(linspace(0, 1000), (linspace(0,1000) **2))

Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

20 %0 EQ %0 000

Jupyter Notebooks: Stringsort.ipynb
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