Algorithmen und Datenstrukturen

D1. Sortieren von Strings

Gabi Roger und Marcel Liithi
Universitat Basel

16. Mai 2019

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen

16. Mai 2019

1/



Algorithmen und Datenstrukturen
16. Mai 2019 — D1. Sortieren von Strings

D1.1 Motivation

D1.2 Strings

D1.3 Sortieren von Strings
D1.4 LSD-Sortierverfahren

D1.5 Quicksort

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 2 /35



Ubersicht

—| Sortieren |

Komplexitats-
analyse

_ Datenstrukturen

—| Suchen | Suchen (Tries)
—{ Graphen |

Kompression

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 3/35



String algorithmen oder generische Algorithmen?

» Alle Algorithmen zum Sortieren / Suchen wurden iiber
beliebige Schliissel definiert.

» Konnen direkt auf Strings angewendet werden.

» Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schliissel wird nicht ausgenutzt.

Frage

Kdnnen wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

4



Heutiges Programm

» Motivation
» Abstraktion: Alphabet
» LSD-Sort
» Quicksort fiir Strings

Repetition und Erweiterung bereits bekannter Konzepte

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen

16. Mai 2019

5/



D1. Sortieren von Strings Motivation

D1.1 Motivation

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 6 /35



D1. Sortieren von Strings Motivation

Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Reprasentation
von Informationen

» Programmcode
» Datenreprasentation im Web (HTML / Json / CSS )
» Kommunikation (E-Mail, Textmessages)

> Gensequenzen

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

7/



D1. Sortieren von Strings Motivation

Anwendung 1: Programmcode

Programme sind Strings

» Compiler / Interpreter interpretieren und transformieren
Strings in ausfiihrbare Programme

» IDEs bietet Funktionalitdt zur effizienten Suche und
Manipulation von Code

> Selektion von allen Wértern, die Suchergebniss entsprechen
» Suche nach reguldrem Ausdriicken
» Refactoring

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 8 /35



D1. Sortieren von Strings

Motivation

Anwendung 2: Informations und Kommunikationssysteme

Text ist wichtigste Reprasentation fiir Information und
Kommunikation im Internet

» E-Mail / SMS / ...: Text wird von einem an anderen Ort
transferiert.

» Webbrowser: interpretiert CSS und HTML und stellt diesen
formatiert dar.

» Suchmaschine: Muss grosse Mengen an Text effizient
indizieren und durchsuchen.

M. Liithi (Universitiat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

9 /35



D1. Sortieren von Strings Motivation

Anwendung 3: Bioinformatik

The digital information that underlies biochemistry, cell biology,
and development can be represented by a simple string of G's, A's,
T's, and C's. This string is the root data structure of an organism’s
biology.

Maynard Olson - A time to sequence

> Analyse des Genoms eines Organismus

> Beispiel: Genom Mensch besteht ist String aus ca.
3'000'000'000 Zeichen

Beispielprobleme
» Suchen von Sequenzen in grossen Datenbanken
» Vergleichen von (Sub)-Sequenzen von Strings
» Finden von hiufig auftretenden Mustern
> ..

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 10 / 35



D1. Sortieren von Strings Strings

D1.2 Strings

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 11 /35



D1. Sortieren von Strings

Strings

String
Endliche Folge von Zeichen (Character)

» Strings sind unveranderlich (immutable). Einmal erzeugt
kdnnen Strings nicht mehr verandert werden.

> Ideale Schliissel fiir Symboltabellen

» Intern haufig als Array von Zeichen implementiert.

0 1 2 3 4 5 6 7 8 9
AT T A CKATD A W N

M. Liithi (Universitiat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

Strings

12

35



D1. Sortieren von Strings

Characters

Friiher:
» 7 Bit Zeichensatz (ASCII)
» 8 Bit Zeichensatz (extended ASCII)
Heute:
» 8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python
» Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

» Python kennt keinen Charactertyp. Ausdruck s]i] ist (UTF-8)
String der Lange 1.

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

Strings

13 /35



D1. Sortieren von Strings

Abstraktion: Alphabet

» Unicode umfasst 1'112'064 Zeichen.

» Kleineres Alphabet reicht fiir viele Anwendungen aus

Name Radix (R)  Bits (logy(R))  Zeichen

BINARY 2 1 01

DNA 4 2 ACGT
LOWERCASE 26 5 a-z

UPPERCASE 26 5 A-Z

ASCII 128 7 ASCII Characters
EXTENDED_ASCII | 256 8 EXTENDED_ASCII
UNICODE 1'114'112 21 UNICODE

M. Liithi (Universitiat Basel)

Algorithmen und Datenstrukturen 16. Mai 2019

Strings

14

35



D1. Sortieren von Strings Strings

Alphabet

Abstraktion Alphabet erlaubt uns Code unabhangig vom benutzten
Alphabet zu schreiben.

class Alphabet:
def __init__(s : List[char])
def toChar (index : Int) -> char
def toIndex(c : Char) -> int
def contains(c : Char) -> boolean
def R() -> int # Radicz

M. Liithi (Universitiat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 15 /35



D1. Sortieren von Strings Sortieren von Strings

D1.3 Sortieren von Strings

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 16 / 35



D1. Sortieren von Strings Sortieren von Strings

Sortieralgorithmen

Algorithmus  Laufzeit O(+) Speicherbedarf O(:) stabil
best/avg./worst best/avg. /worst

Selectionsort ~ n? 1 nein

Insertionsort ~ n/n?/n? 1 ja

Mergesort nlogn n ja

Quicksort nlogn/nlogn/n®> logn/logn/n nein

Heapsort nlogn 1 nein

O(nlog n) ist beweisbar der lower bound fiir allgemeine,
vergleichsbasierte, Sortierverfahren.

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 17 / 35



D1. Sortieren von Strings

Idee 1

» Zeichen in Alphabet sind geordnet.
» Sortierung kann durch " Fachverteilen” hergestellt werden
> Vergleiche: Radixsort

Erinnerung: Radixsort
> Zahlen: z.B. 763, 983, 96, 286, 462

» Teile Zahlen nach letzter Stelle auf:

0 1 2 3 4 5 6 7 8 9
462 763 96
983 286

» Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

» Wiederhole mit zweitletzter Stelle, etc.

» Grundlage LSD-Sortierverfahren

M. Liithi (Universitiat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

Sortieren von Strings

18 /35



D1. Sortieren von Strings Sortieren von Strings

ldee 2

» Wie viele Character Vergleiche miissen durchgefiihrt werden
um zwei Strings zu vergleichen?

0 1 2 3 4 5 6
p r e f e t c

7
h
p r e f i x e s

» Worst case: Proportional zur Stringlange
» Aber: Oft sublinear

Wir kdnnen Sortieralgorithmen so schreiben, dass sie Vergleiche
auf einzelne Zeichen reduzieren.

» Grundlage von 3-Wege Quicksort fiir Strings

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

19

35



D1. Sortieren von Strings LSD-Sortierverfahren

D1.4 LSD-Sortierverfahren

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 20 / 35



D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

» Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl 2zu sortierender Zeichen
count = [0] * (alphabet.radix() + 1)
aux = [Nonel * N

# Zeichen zaehlen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil)
count [index0fchar + 1] += 1

# Kummulative Summe
for r in range (0, alphabet.radix()):
count [r+1] += count[r]

# Verteilen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil)
countForChar = count[indexOfchar]
aux [countForChar] = alil
count [index0fchar] += 1

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 21 / 35



D1. Sortieren von Strings

LSD-Sortierverfahren (1 Zeichen)

LSD-Sortierverfahren

N = len(a) # Anzahl 2u sortierender Zeichen in array a
count = [0] * (alphabet.radix() + 1)

# Zeichen Zaehlen

for i in range (0, N):
index0fchar = alphabet.toIndex(alil)
count [index0fchar + 1] += 1

BNENDN
e ]~
alil d a ¢ f f b d b f b e a countfr] 0/2/3/1/2 1 3

01 2 3 4 5 6 7 8 9 10 11 ///
Lf (o] [

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 22 / 35



D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

# Kummulative Summe
for r in range(0, alphabet.radix()):
count [r+1] += count[r]

| #<a N#<c \|#<e ‘\D\

count|r] 0 2 5 6 9 12

3 Schliissel >=2<5 = -
-> Position 2, 3, 4

](\\\\ 2 Schliissel >=6< 8
| #<b | |#<d|[#<f] "> Position 6, 7

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

23/

35



D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

# Verteilen

for i in range (0, N):
index0fchar = alphabet.toIndex(alil)
countForChar = count[index0fchar]
aux [countForChar] = al[il
count [index0fchar] += 1

ail d a ¢ f f b d b f b e a

01 2 345 6 7 8.9 1011

—
count[r] 0 2 5 6 8 9 12

——
aux] a a b b b ¢ d d e f f f

0O 1 2 3 4 5 6 7 8 9 10 11

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

24 /



D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

» Verfahren ist stabil

» Zeitaufwand: Proportional zu N + R, wobei R Grosse des
Alphabets ist

» Speicher: Proportional zu N + R (aux-Array und count Array)

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 25 / 35



D1. Sortieren von Strings LSD-Sortierverfahren

LSD-Sortierverfahren

sortieren (d=2) sortieren (d=1) sortieren (d=0)
dla |b dla |b dla |b alc |e
a|d |d cla|b cla|b a|d |d
cla|b elb |b fla|d bla |d
fla|d a|a|d [d bla |d ble |d
fle |e “|fla |d d|a |d bla |e
bla |d *|bla |d e|lb |b cla|b
dla|d|_ ,|d|a |d alc |e dla |b
ble |e ,|fle |d ald |d dja |d
fle|d L |b|e|d fle|d e|lb |b
ble |d fle|e ble |d fla|d
e|lb |b ble |e fle|e fle|d
alc |e alc |e ble |e fle|e

Stabil — Pfeile kreuzen sich nicht

> Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)

» Funktioniert, da Sortierung stabil ist

M. Liithi (Universitiat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 26 / 35



D1. Sortieren von Strings

LSD-Sortierverfahren

LSD-Sortierverfahren

N = len(a); aux = [None] * N ; d = numDigits - 1
while d >= O0:
count = [0] * (alphabet.radix() + 1)

for

for

for

for

i in range(0, N):
index0OfcharAtPosdInA = alphabet.toIndex(ali]l[d])
count [index0OfcharAtPosdInA + 1] += 1

r in range (0, alphabet.radix()):
count [r+1] += count[r]

i in range (0, N):

index0fCharAtPosdInA = alphabet.toIndex(alil[d])
countForChar = count[index0fCharAtPosdInAl]

aux [countForChar] = al[il

count [index0fCharAtPosdInA] += 1

i in range(0, N):
alil = aux[i]

M. Liithi (Universitiat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

27 /



D1. Sortieren von Strings Quicksort

D1.5 Quicksort

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 28 / 35



D1. Sortieren von Strings

Erinnerung: Quicksort
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
\ J k J
f |

< pivot = pivot

Quicksort

pivot

» Waihle Pivot Element
» Partitioniere Array

» Rekursion auf linkes und rechtes Teilarray

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 29 / 35



D1. Sortieren von Strings

Quicksort: Gleiche Schlissel

/illllllllll

S pivot > plvot

plvot

» Was passiert bei vielen gleichen Schliisseln?

» Unnétige Partitionierung von gleichen Schliisseln.

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019

Quicksort

30 / 35



D1. Sortieren von Strings Quicksort

3-Wege Quicksort

0 1 2 3 4 5 6 7 8 9 10
S A B R A CoAD A R A
0 1 2 3 4 5 6 7 8 9 10
{ I\ J
o i Y

< pivot = pivot

> pivot

» Gleiche Schlussel sind bereits sortiert.
> Kein rekursiver Aufruf mehr nétig.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 16. Mai 2019 31/35



D1. Sortieren von Strings

Quicksort fiir Strings

» 3-Wege Quicksort per
Buchstabe

» Bei gleichen
Anfangsbuchstaben,
vergleiche nachsten
Buchstaben.

M. Liithi (Universitat Basel)

verwendet ersten Zeichenwert,
um in Kleiner-, Gleich- und
Grofer-Teilarrays zu
partitionieren

<v
<v
<v

Algorithmen und Datenstrukturen

sortiert Teilarrays

Quicksort

rekursiv (ausgenommen

das erste Zeichen
vom Gleich-Teilarray)

s <<<

<< -

16. Mai 2019

32 /35



D1. Sortieren von Strings

Quicksort fiir Strings

graue Balken reprisentieren

s b a are leere Teilarrays

s a o by

s S o al sea

b s e 2| h[::: €

e s e al h e[::}
s S € L 1(____w s

S S o S o S o A i I
e s h €| she

s s h €| she

s S| u el ﬁ_____1 shells

s 5 h o shore

a s h surely

s E T H €| the

s " t ‘ h‘ ‘ e the

Quicksort

zwei weitere Durchliufe,
bis das Ende erreicht wird

1 1
1 1
sells

sells

sells sells

keine rekursiven Aufrufe
(Ende des Strings)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18

M. Liithi (Universitat Basel)

Algorithmen und Datenstrukturen

16. Mai 2019 33/35



D1. Sortieren von Strings Quicksort

Laufzeit

Theorem

Um ein Array von N zufilligen Strings zu sortieren, benétigt der
3-Weg-Quicksort fiir Strings im Durchschnitt ~ 2NInN
Zeichenvergleiche.

» Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

» Aber: Wir haben Zeichenvergleiche und nicht
Schliisselvergleiche

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 34 / 35



D1. Sortieren von Strings Quicksort

Implementation

ZJupyter untitied wemen

File  Edt View Inset Cell Kemel Help # |Python Rootl O

B+ @B AV M EC Cxe @ Cellobar & & B

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

Tn [7]: plot(linspace(0, 1000), (linspace(0,1000) **2))

Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

20 %0 EQ %0 000

Jupyter Notebooks: Stringsort.ipynb

M. Liithi (Universitat Basel) Algorithmen und Datenstrukturen 16. Mai 2019 35 /35



	Motivation
	

	Strings
	

	Sortieren von Strings
	

	LSD-Sortierverfahren
	

	Quicksort
	


