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Crashkurs Komplexitatstheorie

m Entscheidungsprobleme: Ja/Nein-Antwort gesucht
Gegeben gewichteter Graph, Knoten s, t und Zahl K.
Gibt es einen Pfad von s nach t mit Kosten hoéchstens K7

m Suchprobleme: tatsdchliche Lésung gesucht
Gegeben gewichteter Graph und Knoten s, t.
Finde einen kiirzesten Pfad von s nach t.
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Crashkurs Komplexitatstheorie

Wir unterscheiden verschiedene Klassen von Problemen:

m P: alle Probleme, die man mit einem polynomiellen
Algorithmus (in O(p) fiir irgendein Polynom p) Iésen kann.
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Crashkurs Komplexitatstheorie

Wir unterscheiden verschiedene Klassen von Problemen:

m P: alle Probleme, die man mit einem polynomiellen
Algorithmus (in O(p) fiir irgendein Polynom p) Iésen kann.
m NP: alle Probleme, bei denen man einen Beweis
fiir eine Ja-Antwort des Entscheidungsproblems
in polynomieller Zeit verifizieren kann.
Beweis: z.B. konkreter Pfad mit Kosten < K
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Beweis: z.B. konkreter Pfad mit Kosten < K

m P 4 NP? Wir wissen es nicht.
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Crashkurs Komplexitatstheorie

Wir unterscheiden verschiedene Klassen von Problemen:

m P: alle Probleme, die man mit einem polynomiellen
Algorithmus (in O(p) fiir irgendein Polynom p) Iésen kann.

m NP: alle Probleme, bei denen man einen Beweis
fiir eine Ja-Antwort des Entscheidungsproblems
in polynomieller Zeit verifizieren kann.

Beweis: z.B. konkreter Pfad mit Kosten < K

m P 4 NP? Wir wissen es nicht.

m NP-schwere Probleme: Probleme, die mindestens so schwierig
sind, wie die schwierigsten Probleme in NP.
— keine polynomiellen Verfahren bekannt.
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sind, wie die schwierigsten Probleme in NP.
— keine polynomiellen Verfahren bekannt.

m NP-vollstindige Entscheidungsprobleme: NP-schwer & in NP
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Crashkurs Komplexitatstheorie

Wir unterscheiden verschiedene Klassen von Problemen:

m P: alle Probleme, die man mit einem polynomiellen
Algorithmus (in O(p) fiir irgendein Polynom p) Iésen kann.
m NP: alle Probleme, bei denen man einen Beweis
fiir eine Ja-Antwort des Entscheidungsproblems
in polynomieller Zeit verifizieren kann.
Beweis: z.B. konkreter Pfad mit Kosten < K
m P 4 NP? Wir wissen es nicht.
m NP-schwere Probleme: Probleme, die mindestens so schwierig
sind, wie die schwierigsten Probleme in NP.
— keine polynomiellen Verfahren bekannt.
m NP-vollstindige Entscheidungsprobleme: NP-schwer & in NP

m NP-3quivalente Suchprobleme: zugehériges
Entscheidungsproblem NP-vollstandig



Andere Graphenprobleme

0O000@0000000

Fliisse in Graphen |

Definition (Flussnetzwerk)
Ein Flussnetzwerk N = (G, s, t, k) ist gegeben durch
m einen gerichteten Graphen G = (V, E),
m einer Quelle (source) s € V,
m einer Senke (target) t € V, und
m einer Kapazitatsfunktion k : E — R$°.
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Fliisse in Graphen Il

Definition (Fluss)

Ein s-t-Fluss f weisst jeder Kante einen Wert aus R>¢ zu, wobei
m der Flusswert die Kapazitat der Kante nicht iibersteigt:
f(e) < k(e) fiir alle e € E
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Fliisse in Graphen Il

Definition (Fluss)
Ein s-t-Fluss f weisst jeder Kante einen Wert aus R>¢ zu, wobei
m der Flusswert die Kapazitat der Kante nicht iibersteigt:
f(e) < k(e) fiir alle e € E

m bei allen Knoten ausser der Quelle und der Senke
genauso viel hinein wie hinaus fliesst:

S f((ww)= > F((u,w)) firalle ve V\ {s,t}

(u,w)€E (u,w)€E
w=v u=v




Andere Graphenprobleme

0O0000e000000

Fliisse in Graphen Il

Definition (Fluss)
Ein s-t-Fluss f weisst jeder Kante einen Wert aus R>¢ zu, wobei
m der Flusswert die Kapazitat der Kante nicht iibersteigt:
f(e) < k(e) fiir alle e € E
m bei allen Knoten ausser der Quelle und der Senke
genauso viel hinein wie hinaus fliesst:

S f((ww)= > F((u,w)) firalle ve V\ {s,t}

(u,w)€E (u,w)€E

w=v u=v

Der Wert des Flusses ist der Uberschuss in der Senke:

|f\:quw quw

(u,w)€E (u,w)€E
w=t u=t
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Beispiel
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Beispiel

Wie schwer ist es, einen maximalen Fluss zu finden?
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Beispiel

Wie schwer ist es, einen maximalen Fluss zu finden?
z.B. mit Edmonds-Karp-Algorithmus in O(|E|?| V)
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Cliquen

Definition (Clique)

Eine Clique in einem ungerichteten Graphen (V/, E) ist eine
Teilmenge C C V der Knoten, bei der jedes Knotenpaar durch eine
Kante verbunden ist: fiir u,v € C mit u # v gilt {u, v} € E.
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Definition (Clique)

Eine Clique in einem ungerichteten Graphen (V/, E) ist eine
Teilmenge C C V der Knoten, bei der jedes Knotenpaar durch eine
Kante verbunden ist: fiir u,v € C mit u # v gilt {u, v} € E.

Wie schwer ist es, eine grosste Clique in einem Graphen zu finden?
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Definition (Clique)

Eine Clique in einem ungerichteten Graphen (V/, E) ist eine
Teilmenge C C V der Knoten, bei der jedes Knotenpaar durch eine
Kante verbunden ist: fiir u,v € C mit u # v gilt {u, v} € E.

Wie schwer ist es, eine grosste Clique in einem Graphen zu finden?
NP-3aquivalent
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Definition (Graphenisomorphie)

Zwei Graphen sind isomorph, wenn sie bis auf die Namen der
Knoten gleich sind.
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Graphenisomorphie

Definition (Graphenisomorphie)
Zwei Graphen sind isomorph, wenn sie bis auf die Namen der
Knoten gleich sind.

Wie schwer ist es zu entscheiden, ob zwei Graphen isomorph sind?



Andere Graphenprobleme

000000008000

Graphenisomorphie

Definition (Graphenisomorphie)
Zwei Graphen sind isomorph, wenn sie bis auf die Namen der
Knoten gleich sind.

Wie schwer ist es zu entscheiden, ob zwei Graphen isomorph sind?
In NP, aber unbekannt ob in P und/oder NP-vollstandig



Andere Graphenprobleme

000000000800

Farbbarkeit

Definition (k-Farbbarkeit)

Ein ungerichteter Graph G = (V/, E) ist k-farbbar (k € N),
falls es eine Farbung f : V — {1,..., k} gibt, so dass

fir alle {v,w} € E gilt: f(v) # f(w).
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Definition (k-Farbbarkeit)

Ein ungerichteter Graph G = (V/, E) ist k-farbbar (k € N),
falls es eine Farbung f : V — {1,..., k} gibt, so dass

fir alle {v,w} € E gilt: f(v) # f(w).

Wie schwer ist es zu entscheiden,
ob ein gegebener Graph k-farbbar ist?
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Farbbarkeit

Definition (k-Farbbarkeit)

Ein ungerichteter Graph G = (V/, E) ist k-farbbar (k € N),
falls es eine Farbung f : V — {1,..., k} gibt, so dass

fir alle {v,w} € E gilt: f(v) # f(w).

Wie schwer ist es zu entscheiden,
ob ein gegebener Graph k-farbbar ist?

NP-vollstandig
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Konigsberger Briickenproblem

Gibt es einen Rundweg, der jede Briicken exakt einmal verwendet?
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Eulerkreis

Definition (Eulerkreis)

Ein Eulerkreis in einem Graphen ist ein Zyklus,
der jede Kante genau einmal enthilt.
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Eulerkreis

Definition (Eulerkreis)

Ein Eulerkreis in einem Graphen ist ein Zyklus,
der jede Kante genau einmal enthilt.

Wie schwer ist es zu entscheiden,
ob ein Graph einen Eulerkreis hat?
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Eulerkreis

Definition (Eulerkreis)

Ein Eulerkreis in einem Graphen ist ein Zyklus,
der jede Kante genau einmal enthilt.

Hat Eulerkreis gdw. jeder
Knoten geraden Grad hat
und Graph verbunden ist.

Wie schwer ist es zu entscheiden,
ob ein Graph einen Eulerkreis hat?
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