
Algorithmen und Datenstrukturen
C5. Kürzeste Pfade: Grundlagen

Gabriele Röger

Universität Basel

9. Mai 2019

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 1 / 24

Algorithmen und Datenstrukturen
9. Mai 2019 — C5. Kürzeste Pfade: Grundlagen

C5.1 Einführung

C5.2 Grundlagen

C5.3 Optimalitätskriterium und Generisches
Verfahren

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 2 / 24

Graphen: Übersicht

Graphen

Repräsentation

Exploration

Exploration:
Anwendungen

Minimale
Spannbäume

Kürzeste
Pfade

Grundlagen

Dijkstras
Algorithmus

Azyklische
Graphen

Algorithmus von
Bellman und Ford

Andere
Graphenprobleme

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 3 / 24

C5. Kürzeste Pfade: Grundlagen Einführung

C5.1 Einführung

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 4 / 24



C5. Kürzeste Pfade: Grundlagen Einführung

Google Maps

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 5 / 24

C5. Kürzeste Pfade: Grundlagen Einführung

Inhaltsabhängige Bildverzerrung (Seam Carving)

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 6 / 24

C5. Kürzeste Pfade: Grundlagen Einführung

Anwendungen

I Routenplanung

I Pfadplanung in Computerspielen

I Roboternavigation

I Seam Carving

I Handlungsplanung

I Typesetting in TeX

I Routingprotokolle in Netzwerken (OSPF, BGP, RIP)

I Routing von Telekommunikationsnachrichten

I Verkehrsplanung

I Ausnutzen von Arbitrage-Möglichkeiten in Wechselkursen

Quelle (teilweise): Network Flows: Theory, Algorithms, and Applications,
Quellei (teilweise): R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 7 / 24

C5. Kürzeste Pfade: Grundlagen Einführung

Varianten

Was interessiert uns?

I Single source: von einem Knoten s zu allen anderen Knoten

I Single sink: von allen Knoten zu einem Knoten t

I Source-sink: von Knoten s zu Knoten t

I All pairs: von jedem Knoten zu jedem anderen

Grapheigenschaften

I Beliebige / nicht-negative / euklidische Gewichte

I Beliebige / nicht-negative / keine Zyklen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 8 / 24



C5. Kürzeste Pfade: Grundlagen Grundlagen

C5.2 Grundlagen

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 9 / 24

C5. Kürzeste Pfade: Grundlagen Grundlagen

Gewichtete gerichtete Graphen

Die (high-level) Definition gewichteter Graphen bleibt gleich,
wir betrachten jetzt aber gerichtete Graphen.

Gewichteter Graph

Bei einem (kanten-)gewichteter Graph hat jede Kante e ∈ E ein
Gewicht (oder Kosten) weight(e) aus den reellen Zahlen.

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

-1

5
2

2

1

5

Erinnerung: Ein gerichteter Graph heisst auch Digraph.
G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 10 / 24

C5. Kürzeste Pfade: Grundlagen Grundlagen

API für gewichtete, gerichtete Kante

1 class DirectedEdge:

2 # Kante von n1 zu n2 mit Gewicht w

3 def __init__(n1: int, n2: int, w: float) -> None

4

5 # Gewicht der Kante

6 def weight() -> float

7

8 # Knoten, von dem Kante ausgeht

9 def from_node() -> int

10

11 # Knoten, zu dem die Kante führt

12 def to_node() -> int

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 11 / 24

C5. Kürzeste Pfade: Grundlagen Grundlagen

API für gewichtete Digraphen

1 class EdgeWeightedDigraph:

2 # Graph mit no_nodes Knoten und keinen Kanten

3 def __init__(no_nodes: int) -> None

4

5 # Füge gewichtete Kante hinzu

6 def add_edge(e: DirectedEdge) -> None

7

8 # Anzahl der Knoten

9 def no_nodes() -> int

10

11 # Anzahl der Kanten

12 def no_edges() -> int

13

14 # Alle Kanten, die von n ausgehen

15 def adjacent_edges(n: int) -> Generator[DirectedEdge]

16

17 # Alle Kanten

18 def all_edges() -> Generator[DirectedEdge]

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 12 / 24



C5. Kürzeste Pfade: Grundlagen Grundlagen

Kürzeste-Pfade-Problem

Kürzeste-Pfade-Problem mit einem Startknoten, SSSP
I Gegeben: Graph und Startknoten s
I Anfrage für Knoten v

I Gibt es Pfad von s nach v?
I Wenn ja, was ist der kürzeste Pfad?

I In kantengewichteten Graphen:
Kürzester Pfad ist der mit dem geringstem Gewicht
(= minimale Summe der Kantenkosten)

Engl. single-source shortest paths problem

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 13 / 24

C5. Kürzeste Pfade: Grundlagen Grundlagen

API für Kürzeste-Pfade-Implementierungen

Die Algorithmen für kürzeste Pfade sollen folgendes Interface
implementieren:

1 class ShortestPaths:

2 # Konstruktor mit Startknoten s

3 def __init__(graph: EdgeWeightedDigraph, s: int) -> None

4

5 # Abstand von s zu v; infinity, falls kein Pfad existiert

6 def dist_to(v: int) -> float

7

8 # Gibt es Pfad von s zu v?

9 def has_path_to(v: int) -> bool

10

11 # Pfad von s zu v; None, falls keiner vorhanden

12 def path_to(v: int) -> Generator[DirectedEdge]

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 14 / 24

C5. Kürzeste Pfade: Grundlagen Grundlagen

Kürzeste-Pfade-Baum

Kürzeste-Pfade-Baum
Für einen kantengewichteten Digraphen G und Knoten s ist ein
Kürzeste-Pfade-Baum ein Teilgraph, der

I einen gerichteten Baum mit Wurzel s bildet,

I alle von s aus erreichbaren Knoten enthält, und

I bei dem jeder Baumpfad ein kürzester Pfad in G ist.

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

5

2

2

2 -1

1

5

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 15 / 24

C5. Kürzeste Pfade: Grundlagen Grundlagen

Kürzeste-Pfade-Baum: Repräsentation

Repräsentation: knotenindizierte Arrays

I parent mit Elternknotenreferenz
Leer für nicht erreichbare und Startknoten

I distance mit Abstand vom Startknoten
∞ für nicht erreichbare Knoten

parent

0 1 2 3 4 5 6 7

5 1 3 6 1 1 4 6

distance

0 1 2 3 4 5 6 7

4 0 4 2 1 2 3 4

0

1

2

3

4

5

6

7

3

2

6

1

2
0

4

2

5

2

2

2 -1

1

5

Was ist mit parallelen Kanten?

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 16 / 24



C5. Kürzeste Pfade: Grundlagen Grundlagen

Extraktion der kürzesten Pfade

1 def path_to(self, node):

2 if self.distance[node] == float('inf'):

3 yield None

4 elif node == self.start:

5 yield node

6 else:

7 # output path form start to parent node

8 self.path_to(self.parent[node])

9 # finish with node

10 yield node

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 17 / 24

C5. Kürzeste Pfade: Grundlagen Grundlagen

Kantenrelaxierung

Kantenrelaxierung für Kante (u, v)

I distance[u]: Länge des kürzesten bekannten Pfades zu u

I distance[v]: Länge des kürzesten bekannten Pfades zu v

I parent[v]: Vorgänger in letzter Kante
des kürzesten bekannten Weges zu v

I Ermöglicht Kante (u, v) einen kürzeren Weg zu v (durch u)?

I Dann update distance[v] und parent[v].

Illustration: Tafel

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 18 / 24

C5. Kürzeste Pfade: Grundlagen Grundlagen

Kantenrelaxierung

1 def relax(self, edge):

2 u = edge.from_node()

3 v = edge.to_node()

4 if self.distance[v] > self.distance[u] + edge.weight():

5 self.parent[v] = u

6 self.distance[v] = self.distance[u] + edge.weight()

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 19 / 24

C5. Kürzeste Pfade: Grundlagen Optimalitätskriterium und Generisches Verfahren

C5.3 Optimalitätskriterium und
Generisches Verfahren

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 20 / 24



C5. Kürzeste Pfade: Grundlagen Optimalitätskriterium und Generisches Verfahren

Optimalitätskriterium

Theorem
Sei G ein gewichteter Digraph ohne negative Zyklen.
Array distance[] enthält die Kosten der kürzesten Pfade von s
genau dann, wenn

1 distance[s] = 0

2 distance[w ] ≤ distance[v ] + weight(e)
für alle Kanten e = (v ,w), und

3 für alle Knoten v ist distance[v ] die Länge irgendeines
Pfades von s zu v bzw. ∞, falls kein solcher Pfad existiert.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 21 / 24

C5. Kürzeste Pfade: Grundlagen Optimalitätskriterium und Generisches Verfahren

Optimalitätskriterium (Forts.)

Beweis

”
⇒“

Da der Graph keine Zyklen mit negativen Gesamtkosten enthält,
kann kein Pfad von s zu s negative Kosten haben. Die Kosten des
leeren Pfades sind damit optimal und distance[s] ist 0.

Betrachte beliebige Kante e von u nach v .

Der kürzeste Pfad von s nach u hat Kosten distance[u].
Erweitern wir diesen Pfad um Kante e, erhalten wir einen Pfad von
s zu v mit Kosten distance[u] + weight(e). Die Kosten eine
kürzesten Pfades von s zu v können also nicht grösser sein und es
gilt distance[v] ≤ distance[u] + weight(e). . . .

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 22 / 24

C5. Kürzeste Pfade: Grundlagen Optimalitätskriterium und Generisches Verfahren

Optimalitätskriterium (Forts.)

Beweis (Fortsetzung).

”
⇐“

Für unerreichbare Knoten ist der Wert per Definition unendlich.

Betrachte beliebigen Knoten v und kürzesten Pfad
p = (v0, . . . , vn) von s zu v , d.h. v0 = s, vn = v .
Sei ei jeweils eine günstigste Kante von vi−1 zu vi .
Da alle Ungleichungen erfüllt sind, gilt

distance[vn] ≤ distance[vn−1] + weight(en)

≤ distance[vn−2] + weight(en−1) + weight(en)

≤ . . . ≤ weight(e1) + · · ·+ weight(en)

= Kosten des optimalen Pfads

Wegen Punkt 3 ist distance[vn] auch nicht echt kleiner als die
optimalen Pfadkosten.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 23 / 24

C5. Kürzeste Pfade: Grundlagen Optimalitätskriterium und Generisches Verfahren

Generischer Algorithmus

Generischer Algorithmus für Startknoten s
I Initialisiere distance[s] = 0 und

distance[v ] =∞ für alle anderen Knoten

I Solange das Optimalitätskriterium nicht erfüllt ist:
Relaxiere eine beliebige Kante

Korrekt:

I Endliches distance[v] entspricht immer den Kosten eines
Pfades von s zu v.

I Jede erfolgreiche Relaxierung reduziert distance[v] für ein v.

I Für jeden Knoten kann Distanz nur endlich oft reduziert
werden.

G. Röger (Universität Basel) Algorithmen und Datenstrukturen 9. Mai 2019 24 / 24


	Einführung
	

	Grundlagen
	

	Optimalitätskriterium und Generisches Verfahren
	


