Algorithmen und Datenstrukturen
C5. Kiirzeste Pfade: Grundlagen

Gabriele Roger

Universitat Basel

Algorithmen und Datenstrukturen
9. Mai 2019 — C5. Kiirzeste Pfade: Grundlagen

C5.1 Einfiihrung
C5.2 Grundlagen

(5.3 Optimalitatskriterium und Generisches
Verfahren

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 9. Mai 2019 2 /24

9. Mai 2019
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 1/24
Graphen: Ubersicht
— Représentation
— Exploration
Exploration:
Minimale
Spannbiume Dijkstras
- Algorithmus
Azyklische
Andere Graphen
Graphenprobleme [Algorithmus von
Bellman und Ford
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 3 /24

C5. Kiirzeste Pfade: Grundlagen Einfiihrung

C5.1 Einfiihrung

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 4 /24

C5. Kiirzeste Pfade: Grundlagen

Inhaltsabhangige Bildverzerrung (Seam Carving)

Einfiihrung

C5. Kiirzeste Pfade: Grundlagen Einfiihrung
Google Maps
ot Aptheke Bssel @) . \—— i
HOTEL D-asel @ %‘
Universitit et
Basel e
el o |
L H 5 = 2N A
° eyl _ SesrTato roduens
G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 5 /24
C5. Kiirzeste Pfade: Grundlagen Einfiihrung
Anwendungen

» Routenplanung

» Pfadplanung in Computerspielen

P> Roboternavigation

» Seam Carving

» Handlungsplanung

> Typesetting in TeX

» Routingprotokolle in Netzwerken (OSPF, BGP, RIP)

» Routing von Telekommunikationsnachrichten

» Verkehrsplanung

» Ausnutzen von Arbitrage-Moglichkeiten in Wechselkursen

Quelle (teilweise): Network Flows: Theory, Algorithms, and Applications,
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 7 /24

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 6 /24
C5. Kiirzeste Pfade: Grundlagen Einfiihrung
Varianten
Was interessiert uns?
» Single source: von einem Knoten s zu allen anderen Knoten
» Single sink: von allen Knoten zu einem Knoten t
» Source-sink: von Knoten s zu Knoten t
> All pairs: von jedem Knoten zu jedem anderen
Grapheigenschaften
> Beliebige / nicht-negative / euklidische Gewichte
> Beliebige / nicht-negative / keine Zyklen
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 8 /24

C5. Kiirzeste Pfade: Grundlagen

Gewichtete gerichtete Graphen

Die (high-level) Definition gewichteter Graphen bleibt gleich,
wir betrachten jetzt aber gerichtete Graphen.

Gewichteter Graph
Bei einem (kanten-)gewichteter Graph hat jede Kante e € E ein
Gewicht (oder Kosten) weight(e) aus den reellen Zahlen.

Erinnerung: Ein gerichteter Graph heisst auch Digraph.

Grundlagen

C5. Kiirzeste Pfade: Grundlagen Grundlagen
G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 9 /24
C5. Kiirzeste Pfade: Grundlagen Grundlagen
API fiir gewichtete, gerichtete Kante
1 class DirectedEdge:
2 # Kante von nl zu n2 mit Gewicht w
3 def __init__(ml: int, n2: int, w: float) -> None
4
5 # Gewicht der Kante
6 def weight() -> float
7
8 # Knoten, wvon dem Kante ausgeht
9 def from_node() -> int
10
11 # Knoten, zu dem die Kante fuhrt
12 def to_node() -> int
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 11 /24

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 10 / 24
C5. Kiirzeste Pfade: Grundlagen Grundlagen
API fiir gewichtete Digraphen
1 class EdgeWeightedDigraph:
2 # Graph mit no_nodes Knoten und keinen Kanten
3 def __init__(no_nodes: int) -> None
4
5 # Fige gewichtete Kante hinzu
6 def add_edge(e: DirectedEdge) -> None
7
8 # Anzahl der Knoten
9 def no_nodes() -> int
10
11 # Anzahl der Kanten
12 def no_edges() -> int
13
14 # Alle Kanten, die won n ausgehen
15 def adjacent_edges(n: int) -> Generator[DirectedEdge]
16
17 # Alle Kanten
18 def all_edges() -> Generator[DirectedEdgel
G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 9. Mai 2019 12 / 24

C5. Kiirzeste Pfade: Grundlagen Grundlagen

Kirzeste-Pfade-Problem

Kiirzeste-Pfade-Problem mit einem Startknoten, SSSP
» Gegeben: Graph und Startknoten s
» Anfrage fiir Knoten v
> Gibt es Pfad von s nach v?
» Wenn ja, was ist der kiirzeste Pfad?
» In kantengewichteten Graphen:
Kiirzester Pfad ist der mit dem geringstem Gewicht
(= minimale Summe der Kantenkosten)

Engl. single-source shortest paths problem

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 13 / 24

C5. Kiirzeste Pfade: Grundlagen Grundlagen

API fiir Kiirzeste-Pfade-Implementierungen

Die Algorithmen fiir kiirzeste Pfade sollen folgendes Interface
implementieren:

class ShortestPaths:
Konstruktor mit Startknoten s
def __init__(graph: EdgeWeightedDigraph, s: int) -> None

def dist_to(v: int) -> float

1
2
3
4
5 # Abstand von s zu v; infinity, falls kein Pfad existiert
6
7
8 # Gibt es Pfad von s zu v?

9 def has_path_to(v: int) -> bool

10

11 # Pfad von s zu v; None, falls keiner vorhanden

12 def path_to(v: int) -> Generator[DirectedEdge]

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 14 / 24

C5. Kiirzeste Pfade: Grundlagen Grundlagen

Kiirzeste-Pfade-Baum

Kiirzeste-Pfade-Baum
Fiir einen kantengewichteten Digraphen G und Knoten s ist ein
Kiirzeste-Pfade-Baum ein Teilgraph, der

> einen gerichteten Baum mit Wurzel s bildet,
» alle von s aus erreichbaren Knoten enthilt, und
> bei dem jeder Baumpfad ein kiirzester Pfad in G ist.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 15 / 24

C5. Kiirzeste Pfade: Grundlagen Grundlagen

Kiirzeste-Pfade-Baum: Reprasentation

Reprasentation: knotenindizierte Arrays

> parent mit Elternknotenreferenz
Leer fiir nicht erreichbare und Startknoten

» distance mit Abstand vom Startknoten
oo fur nicht erreichbare Knoten

01234567
parene (5] [3]6[1]1]4]6]

01234567
[4]of4]2]1]2]3]4]

distance

Was ist mit parallelen Kanten?

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 16 / 24

C5. Kiirzeste Pfade: Grundlagen Grundlagen

Kantenrelaxierung

Kantenrelaxierung fiir Kante (u, v)
> distance[u]: Lange des kiirzesten bekannten Pfades zu u
> distance[v]: Lange des kiirzesten bekannten Pfades zu v

P> parent [v]: Vorgdnger in letzter Kante
des kiirzesten bekannten Weges zu v

» Ermoglicht Kante (u, v) einen kiirzeren Weg zu v (durch u)?
» Dann update distance[v] und parent[v].

[llustration: Tafel

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 18 / 24

C5. Kiirzeste Pfade: Grundlagen Grundlagen

Extraktion der kiirzesten Pfade

1 def path_to(self, node):

2 if self.distance[node] == float('inf'):

3 yield None

4 elif node == self.start:

5 yield node

6 else:

7 # output path form start to parent node

8 self .path_to(self.parent[nodel])

9 # finish with node

10 yield node

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 17 / 24

C5. Kiirzeste Pfade: Grundlagen Grundlagen

Kantenrelaxierung

1 def relax(self, edge):

2 u = edge.from_node()

3 v = edge.to_node()

4 if self.distance[v] > self.distance[u] + edge.weight():

5 self.parent[v] = u

6 self.distance[v] = self.distance[u] + edge.weight()

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 19 / 24

C5. Kiirzeste Pfade: Grundlagen Optimalitatskriterium und Generisches Verfahren

C5.3 Optimalitatskriterium und
Generisches Verfahren

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 20 / 24

C5. Kiirzeste Pfade: Grundlagen Optimalitatskriterium und Generisches Verfahren

Optimalitatskriterium

Theorem

Sei G ein gewichteter Digraph ohne negative Zyklen.

Array distance[] enthilt die Kosten der kiirzesten Pfade von s
genau dann, wenn

© distance[s] =0

@ distance[w| < distance[v] + weight(e)
fiir alle Kanten e = (v, w), und

@ fiir alle Knoten v ist distance|v| die Linge irgendeines
Pfades von s zu v bzw. oo, falls kein solcher Pfad existiert.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 21 / 24

C5. Kiirzeste Pfade: Grundlagen Optimalitatskriterium und Generisches Verfahren

Optimalitatskriterium (Forts.)

Beweis

W=

Da der Graph keine Zyklen mit negativen Gesamtkosten enthilt,
kann kein Pfad von s zu s negative Kosten haben. Die Kosten des

leeren Pfades sind damit optimal und distance[s] ist 0.

Betrachte beliebige Kante e von u nach v.

Der kiirzeste Pfad von s nach u hat Kosten distance [u].
Erweitern wir diesen Pfad um Kante e, erhalten wir einen Pfad von
s zu v mit Kosten distance[u] + weight(e). Die Kosten eine
kiirzesten Pfades von s zu v konnen also nicht grésser sein und es
gilt distance[v] < distance[ul + weight(e).

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 22 / 24

C5. Kiirzeste Pfade: Grundlagen Optimalitatskriterium und Generisches Verfahren

Optimalitatskriterium (Forts.)

Beweis (Fortsetzung).

ot
Fiir unerreichbare Knoten ist der Wert per Definition unendlich.

Betrachte beliebigen Knoten v und kiirzesten Pfad
p=(vo,...,vp) von s zu v, d.h. vy =s, v, = v.
Sei e; jeweils eine giinstigste Kante von v;_1 zu v;.
Da alle Ungleichungen erfiillt sind, gilt

distance[v,] < distance[v,_1] + weight(e,)
< distance[v,_2] + weight(e,_1) + weight(ep)
< ... < weight(er) + - - - + weight(ep)

= Kosten des optimalen Pfads

Wegen Punkt 3 ist distance[v,] auch nicht echt kleiner als die
optimalen Pfadkosten.]

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 9. Mai 2019 23 / 24

C5. Kiirzeste Pfade: Grundlagen Optimalitatskriterium und Generisches Verfahren

Generischer Algorithmus

Generischer Algorithmus fiir Startknoten s
» Initialisiere distance[s] = 0 und
distance[v] = oo fiir alle anderen Knoten

» Solange das Optimalitdtskriterium nicht erfiillt ist:
Relaxiere eine beliebige Kante

Korrekt:
» Endliches distance[v] entspricht immer den Kosten eines
Pfades von s zu v.
> Jede erfolgreiche Relaxierung reduziert distance[v] fiir ein v.
» Fiir jeden Knoten kann Distanz nur endlich oft reduziert
werden.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 9. Mai 2019 24 / 24

g

	Einführung
	

	Grundlagen
	

	Optimalitätskriterium und Generisches Verfahren
	

