Algorithmen und Datenstrukturen
C3. Union-Find

Gabriele Roger

Universitat Basel

2. Mai 2019

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 1/24

Algorithmen und Datenstrukturen
2. Mai 2019 — C3. Union-Find
C3.1 Union-Find

(3.2 Zusammenhangskomponenten und
Aquivalenzklassen

Informatiker des Tages: Robert Tarjan

» Forschung im Bereich
Graphentheorie und
Datenstrukturen

> viele bekannte Algorithmen

» Bestimmung des letzten
gemeinsamen Vorfahren im Baum

» Bestimmung eines minimalen
Spannbaums

» Bestimmung der starken
Zusammenhangskomponenten

» Planaritatstest fiir Graphen
(mit John Hopcroft)

Robert Tarjan » Gewinner Turing-Award (1986)

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 3 /24

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 2 /24
C3. Union-Find Union-Find
G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 4 /24

C3. Union-Find Union-Find C3. Union-Find Union-Find

Fragen Union-Find-Datentyp
o gingupuys :

']%E%[I qngﬁ:ﬂ&
agiinh F%LL mugl gl
. HiH I I
e hlnsin Hlk

— L] — . .
TRI TG

1 .
E}:%f] | [1 11 # Sind v und w verbunden?

Konnen Frage mit Hilfe folgender Datenstruktur beantworten:

1

class UnionFind:
Initialistert n Knoten mit Namen O, ..., n-1
def __init__(m: int) -> None

I rf
I

I

def union(v: int, w: int) -> None

L]
|l
10

Komponentenbezeichner fir v

1
2
3
4
5 # Figt Verbindung zwischen v und w hinzu
6
7
8
9 def find(v: int) -> int

T

[[

—

L]
{: T I L I 12 def connected(v: int, w: int) -> bool
] Eq I i I 13
| L] I 1 pEgn N
14 # Anzahl der Zusammenhangskomponenten
Sind die roten Knoten verbunden? 15 def count() -> int
Wie viele Zusammenhangskomponenten hat der Graph?
G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 5 /24 G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 6 /24
C3. Union-Find Union-Find C3. Union-Find Union-Find
(Etwas) naiver Algorithmus: Quick-Find Quick-Find-Algorithmus
1 class QuickFind:
2 def __init__(self, no_nodes):
3 self.id = list(range(no_nodes))
4 self.components = no_nodes *\\\\
» Fiir n Knoten: Array id der Lange n 5 0,1 des-1]
; - ; def find 1f, : , L, ..., ho_nodaes-
> Eintrag an Stelle i ist Bezeichner der ° of find(self, v)
. . 7 return self.id[v]
Zusammenhangskomponente, in der Knoten i liegt. s
> Anfanglich liegt jeder Knoten (alleine) in seiner eigenen 0 def union(self, v, w):
Zusammenhangskomponente (insgesamt n Stiick). v ldv = self find(v)
11 id_w = self.find(w)
> Aktualisiere das Array bei jedem Aufruf von union. 12 if id_v == id_w: # already in same component
13 return
14 # replace all occurrences of td_v in self.id with id_w
15 for i in range(len(self.id)):
16 if self.id[i] == id_v:
17 self.id[i] = id_w
18 self.components -= 1 # we merged two components

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 7 /24 G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 8 /24

C3. Union-Find

Quick-Find-Algorithmus (Fortsetzung)

Union-Find

20 def connected(self, v, w):
21 return self.find(v) == self.find(w)
22
23 def count(self):
24 return self.components
Aufwand?

» Kostenmodell = Anzahl Arrayzugriffe
» ein Arrayzugriff fiir jeden Aufruf von find

» zwischen n+ 3 und 2n + 1 Arrayzugriffe
fiir jeden Aufruf von union, der zwei Komponenten vereinigt

C3. Union-Find Union-Find

Etwas besserer Algorithmus: Quick-Union

» (implizite) Baumstruktur zur Reprasentation jeder
Zusammenhangskomponente

P Reprasentiert durch Array mit Eintrag des Elternknotens
(Wurzel: Referenz auf sich selbst)
0123456738
;3]5]of3]6]5]3]6]5]

(5)

®) L @

» Waurzelknoten dient als Bezeichner der
Zusammenhangskomponente

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 10 /

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 9 /24
C3. Union-Find Union-Find
Quick-Union-Algorithmus
1 class QuickUnion:
2 def __init__(self, no_nodes):
3 self .parent = list(range(no_nodes))
4 self.components = no_nodes
5
6 def find(self, v):
7 while self.parent[v] != v:
8 v = self.parent[v]
9 return v
10
11 def union(self, v, w):
12 id_v = self.find(v)
13 id_w = self.find(w)
14 if id_v == id_w: # already <n same component
15 return
16 self .parent[id_v] = id_w
17 self.components -= 1
18
19 # connected und count wie bet QuickFind
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 11 /24

C3. Union-Find Union-Find

Erste Verbesserung

» Problem bei Quick-Union: Bdume konnen zu Ketten entarten
— find bendtigt lineare Zeit in der Grosse der Komponente.

» Idee: Hange in union flacheren Baum an Wurzel
des tieferen Baums

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 12

/ 24

C3. Union-Find

Ranked-Quick-Union-Algorithmus

Union-Find

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

def

def

class RankedQuickUnion:

__init__(self, no_nodes):

self .parent = list(range(no_nodes))
self.components = no_nodes

self.rank = [0] * no_nodes # [0, ..., 0]

union(self, v, w):
id_v = self.find(v)
id_w = self.find(w)
if id_v == id_w:
return
if self.rank[id_w] < self.rank[id_v]:
self.parent[id_w] = id_v
else:
self.parent[id_v] = id_w
if self.rank[id_v] == self.rank[id_w]:
self.rank[id_w] += 1
self.components -= 1

connected, count und find wie bet QuickUnion

G. Roger (Universitit Basel)

Algorithmen und Datenstrukturen

2. Mai 2019 13 / 24

C3. Union-Find

Zweite Verbesserung

Pfadkompression

> |dee: Hange in find alle traversierten Knoten direkt
an die Wurzel um

> Wir aktualisieren die Hohe des Baumes bei der
Pfadkompression nicht.

» Wert von rank kann von tatsdchlicher Héhe abweichen.
» Deshalb heisst er auch Rang (rank) statt Hohe.

Union-Find

C3. Union-Find

Union-Find

Ranked-Quick-Union-Algorithmus mit Pfadkompression

1
2
3
4
5
6
7
8
9

10
11
12
13
14

def

def

connected,

class RankedQuickUnionWithPathCompression:

__init__(self, no_nodes):

self .parent = list(range(no_nodes))
self.components = no_nodes

self.rank = [0] * no_nodes # [0, ..., 0]

find(self, v):
if self.parent[v] == v:
return v
root = self.find(self.parent[v])
self.parent[v] = root
return root

count und union wie bet Ranked@uickUnion

G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

2. Mai 2019 15 / 24

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 14 / 24
C3. Union-Find Union-Find
Diskussion
> Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten fiir alle Operationen
» Genauer: [Tarjan 1975]
> m Aufrufe von find bei n Objekten (und héchstens n — 1
Aufrufe von union, die zwei Komponenten vereinigen)
> O(ma(m,n)) Arrayzugriffe
P« ist Umkehrfunktion einer Variante der Ackermann-Funktion
» In der Praxis ist o(m, n) < 3.
» Trotzdem: es kann keinen Union-Find-Algorithmus geben,
der lineare Zeit garantieren kann.
(unter ,,Cell-Probe"-Berechnungsmodell)
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 16 / 24

C3. Union-Find Union-Find

Vergleich mit explorationsbasiertem Verfahren

> Kapitel C2: Algorithmus ConnectedComponents,
der auf Graphenexploration basiert

» Nach der Vorberechnung kosten Anfragen nur konstante Zeit.

» In der Praxis ist Union-Find meist schneller, da der Graph
fiir viele Zwecke nicht vollstandig aufgebaut werden muss.

» Ist der Graph schon aufgebaut, kann Graphenexploration
besser sein.
» Weiterer Vorteil von Union-Find

» Online-Verfahren
» problemloses Hinzufiigen weiterer Kanten

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 17 / 24

C3. Union-Find

C3.2 Zusammenhangskomponenten
und Aquivalenzklassen

G. Roger (Universitit Basel)

Algorithmen und Datenstrukturen 2. Mai 2019 18 /

Zusammenhangskomponenten und Aquivalenzklassen

24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Wiederholung: Zusammenhangskomponenten

Ungerichteter Graph

> Zwei Knoten v und v sind genau dann in der gleichen
Zusammenhangskomponente, wenn es einen Pfad
zwischen v und v gibt (= Knoten u und v verbunden sind).

o—o 1°
‘e‘ee@

OF o o

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 19 / 24

C3. Union-Find

Zusammenhangskomponenten: Eigenschaften

» Die Zusammenhangskomponenten definieren eine
Partition der Knoten:
» Jeder Knoten ist in einer Zusammenhangskomponente.
» Kein Knoten ist in mehr als einer Zusammenhangskomponente.
» . ist verbunden mit" ist Aquivalenzrelation
» reflexiv: Jeder Knoten ist mit sich selbst verbunden.
» symmetrisch: Ist u mit v verbunden,
dann ist v mit u verbunden.
» transitiv: Ist ¥ mit v verbunden und v mit w verbunden,
dann ist u mit w verbunden.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 20

Zusammenhangskomponenten und Aquivalenzklassen

/ 24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Partition allgemein

Definition (Partition)
Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

P jedes Element von M in einer Menge in P vorkommt:
USEP S — M, und

» die Mengen in P paarweise disjunkt sind:
SNS' =0firS,S"ePmitS+#S.
Die Mengen in P heissen Blocke.

» P = {{e1,es},{e3},{e2, es5}} ist eine Partition von M.

» Py = {{e1,e4,65},{e3}} ist keine Partition von M.

» P3={{e1, e, 6e5},{e3},{e,e5}} ist keine Partition von M.
» Py ={{ei1},{e},{e3},{es},{es}} ist eine Partition von M.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 21 / 24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Aquivalenzrelation allgemein

Definition (Aquivalenzrelation)

Eine Aquivalenzrelation auf einer Menge M ist eine
symmetrische, transitive und reflexive Relation R C M x M.
Wir schreiben a ~ b fiir (a, b) € R und sagen a ist dquivalent zu b.

» symmetrisch: a ~ b impliziert b ~ a
P transitiv: a ~ b und b ~ ¢ impliziert a ~ ¢

> reflexiv: fur alle e e M: e ~ e

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 22 / 24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Aquivalenzklassen

Definition (Aquivalenzklassen)

Sei R eine Aquivalenzrelation auf der Menge M.
Die Aquivalenzklasse von a € M ist die Menge

[a] ={be M| a~ b}.

» Die Menge aller Aquivalenzklassen ist eine Partition von M.
> Umgekehrt:
Fiir Partition P definiere R = {(x,y) | 3B € P :x,y € B}
(also x ~ y genau dann, wenn x und y im gleichen Block).
Dann ist R eine Aquivalenzrelation.

> Konnen Partitionen als Aquivalenzklassen betrachten und
umgekehrt.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 23 / 24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Union-Find und Aquivalenzen

» Gegeben: endliche Menge M,
Sequenz s von Aquivalenzen a ~ b liber M

> Fasse Aquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.

» Die Zusammenhangskomponenten entsprechen den

Aquivalenzklassen der feinsten Aquivalenzrelation,
die alle Aquivalenzen aus s enthilt.

» keine ,,unndtigen” Aquivalenzen

Wir kénnen die Union-Find-Datenstruktur zur
Bestimmung der Aquivalenzklassen verwenden.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 24 / 24

	Union-Find
	

	Zusammenhangskomponenten und Äquivalenzklassen
	

