Algorithmen und Datenstrukturen
C3. Union-Find

Gabriele Roger

Universitat Basel

2. Mai 2019

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

2. Mai 2019

1/

Algorithmen und Datenstrukturen
2. Mai 2019 — C3. Union-Find

C3.1 Union-Find

(3.2 Zusammenhangskomponenten und
Aquivalenzklassen

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 2 /24

Informatiker des Tages: Robert Tarjan

» Forschung im Bereich
Graphentheorie und
Datenstrukturen

> viele bekannte Algorithmen

» Bestimmung des letzten
gemeinsamen Vorfahren im Baum

» Bestimmung eines minimalen
Spannbaums

» Bestimmung der starken
Zusammenhangskomponenten

» Planaritatstest fiir Graphen
(mit John Hopcroft)

Robert Tarjan » Gewinner Turing-Award (1986)

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 3 /24

C3. Union-Find Union-Find

C3.1 Union-Find

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 4 /24

C3. Union-Find

Fragen

i
N
=1

L
?Ljﬁ
LR
| : ﬂj
Hi:
T

=

I

pEE

I

I

I

i

am
inp
|
g

T
e liaasns!

s

]
i | 1
=i L%HU:L g=iilcese
| e
I I 1 [1 [— N
Sind die roten Knoten verbunden?
Wie viele Zusammenhangskomponenten hat der Graph?

jisi=
HEF
5t

—

i
ot

1]

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019

C3. Union-Find Union-Find
Union-Find-Datentyp
Konnen Frage mit Hilfe folgender Datenstruktur beantworten:
1 class UnionFind:
2 # Inittalisiert n Knoten mit Namen 0, ..., n-1
3 def __init__(n: int) -> None
4
5 # Fugt Verbindung zwischen v und w hinzu
6 def union(v: int, w: int) -> None
7
8 # Komponentenbezeichner fur v
9 def find(v: int) -> int
10
11 # Sind v und w verbunden?
12 def connected(v: int, w: int) -> bool
13
14 # Anzahl der Zusammenhangskomponenten
15 def count() -> int
G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 6 /24

C3. Union-Find

Union-Find

(Etwas) naiver Algorithmus: Quick-Find

G. Roger

Fiir n Knoten: Array id der Lange n

Eintrag an Stelle / ist Bezeichner der
Zusammenhangskomponente, in der Knoten i liegt.

Anféanglich liegt jeder Knoten (alleine) in seiner eigenen
Zusammenhangskomponente (insgesamt n Stiick).

Aktualisiere das Array bei jedem Aufruf von union.

(Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 7/ 24

C3. Union-Find Union-Find

Quick-Find-Algorithmus

1 class QuickFind:

2 def __init__(self, no_nodes):

3 self.id = list(range(no_nodes))

4 self.components = no_nodes

5 K\\\\

6 def find(self, v): [0, 1, ..., no_nodes-1]
7 return self.id[v]

8

9 def union(self, v, w):

10 id_v = self.find(v)

11 id_w = self.find(w)

12 if id_v == id_w: # already in same component

13 return

14 # replace all occurrences of 2d_v wn self.id with id_w
15 for i in range(len(self.id)):

16 if self.id[i] == id_v:

17 self.id[i] = id_w

18 self.components -= 1 # we merged two components

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 8 /24

C3. Union-Find Union-Find

Quick-Find-Algorithmus (Fortsetzung)

20 def connected(self, v, w):
21 return self.find(v) == self.find(w)
22
23 def count(self):
24 return self.components
Aufwand?

» Kostenmodell = Anzahl Arrayzugriffe
> ein Arrayzugriff fiir jeden Aufruf von find

» zwischen n+ 3 und 2n + 1 Arrayzugriffe
fiir jeden Aufruf von union, der zwei Komponenten vereinigt

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019

9/

C3. Union-Find Union-Find

Etwas besserer Algorithmus: Quick-Union

» (implizite) Baumstruktur zur Reprédsentation jeder
Zusammenhangskomponente

» Reprasentiert durch Array mit Eintrag des Elternknotens
(Wurzel: Referenz auf sich selbst)

01234561738

s[s[ol3[6[s[3]6[5] X

(5) ®) ©

® O @ @ @

» Wourzelknoten dient als Bezeichner der
Zusammenhangskomponente

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 10

24

C3. Union-Find

Quick-Union-Algorithmus

Union-Find

1 class QuickUnion:

2 def __init__(self, no_nodes):

3 self .parent = list(range(no_nodes))
4 self.components = no_nodes

5

6 def find(self, v):

7 while self.parent[v] != v:

8 v = self.parent[v]

9 return v

10

11 def union(self, v, w):

12 id_v = self.find(v)

13 id_w = self.find(w)

14 if id_v == id_w: # already in same component
15 return

16 self .parent[id_v] = id_w

17 self.components -= 1

18

19 # connected und count wie bet QuickFind

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

2. Mai 2019

11 /24

C3. Union-Find Union-Find

Erste Verbesserung

» Problem bei Quick-Union: Bdume konnen zu Ketten entarten
— find bendtigt lineare Zeit in der Grésse der Komponente.

» Idee: Hange in union flacheren Baum an Wurzel
des tieferen Baums

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 12 / 24

C3. Union-Find

Ranked-Quick-Union-Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

G. Réger (Universitat Basel)

Union-Find

def

def

class RankedQuickUnion:

__init__(self, no_nodes):

self.parent = list(range(no_nodes))
self.components = no_nodes

self.rank = [0] * no_nodes # [0, ..., 0]

union(self, v, w):

id_v = self.find(v)

id_w = self.find(w)

if id_v == id_w:
return

if self.rank[id_w] < self.rank[id_v]:
self .parent[id_w] = id_v

else:
self.parent[id_v] = id_w

if self.rank[id_v] == self.rank[id_w]:

self.rank[id_w] += 1
self.components -= 1

connected, count und find wie bei QuickUnion

Algorithmen und Datenstrukturen

2. Mai 2019

13 / 24

C3. Union-Find Union-Find

Zweite Verbesserung

Pfadkompression
P Idee: Hange in find alle traversierten Knoten direkt
an die Wurzel um
P> Wir aktualisieren die Hohe des Baumes bei der
Pfadkompression nicht.
» Wert von rank kann von tatsichlicher Hohe abweichen.
» Deshalb heisst er auch Rang (rank) statt Hohe.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 14 / 24

C3. Union-Find

Union-Find

Ranked-Quick-Union-Algorithmus mit Pfadkompression

1
2
3
4
5
6
7
8
9

10
11
12
13
14

def

def

connected,

class RankedQuickUnionWithPathCompression:

__init__(self, no_nodes):
self.parent = list(range(no_nodes))
self.components = no_nodes
self.rank = [0] * no_nodes # [0,

find(self, v):
if self.parent[v] == v:
return v
root = self.find(self.parent[v])
self.parent[v] = root
return root

o]

count und union wie bei RankedluickUnion

G. Réger (Universitat Basel)

Algorithmen und Datenstrukturen

2. Mai 2019

15 / 24

C3. Union-Find

Diskussion

P> Mit allen Verbesserungen erreichen wir beinahe konstante
amortisierte Kosten fiir alle Operationen
» Genauer: [Tarjan 1975]
» m Aufrufe von find bei n Objekten (und hdchstens n —1
Aufrufe von union, die zwei Komponenten vereinigen)
» O(ma(m, n)) Arrayzugriffe
» « ist Umkehrfunktion einer Variante der Ackermann-Funktion
» In der Praxis ist a(m, n) < 3.
» Trotzdem: es kann keinen Union-Find-Algorithmus geben,
der lineare Zeit garantieren kann.
(unter ,, Cell-Probe"-Berechnungsmodell)

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2. Mai 2019

16

Union-Find

24

C3. Union-Find Union-Find

Vergleich mit explorationsbasiertem Verfahren

> Kapitel C2: Algorithmus ConnectedComponents,
der auf Graphenexploration basiert

» Nach der Vorberechnung kosten Anfragen nur konstante Zeit.
» In der Praxis ist Union-Find meist schneller, da der Graph
fiir viele Zwecke nicht vollstédndig aufgebaut werden muss.
> Ist der Graph schon aufgebaut, kann Graphenexploration
besser sein.
> Weiterer Vorteil von Union-Find

» Online-Verfahren
» problemloses Hinzufligen weiterer Kanten

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 17 / 24

C3.2 Zusammenhangskomponenten
und Aquivalenzklassen

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019

. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

18 / 24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Wiederholung: Zusammenhangskomponenten

Ungerichteter Graph

» Zwei Knoten u und v sind genau dann in der gleichen
Zusammenhangskomponente, wenn es einen Pfad
zwischen u und v gibt (= Knoten u und v verbunden sind).

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 2. Mai 2019 19 / 24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Zusammenhangskomponenten: Eigenschaften

» Die Zusammenhangskomponenten definieren eine
Partition der Knoten:
» Jeder Knoten ist in einer Zusammenhangskomponente.
» Kein Knoten ist in mehr als einer Zusammenhangskomponente.
» | ist verbunden mit" ist Aquivalenzrelation
> reflexiv: Jeder Knoten ist mit sich selbst verbunden.
» symmetrisch: Ist u mit v verbunden,
dann ist v mit u verbunden.
P> transitiv: Ist u mit v verbunden und v mit w verbunden,
dann ist v mit w verbunden.

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 20

/ 24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Partition allgemein

Definition (Partition)
Eine Partition einer endlichen Menge M ist eine Menge P
nicht-leerer Teilmengen von M, so dass

» jedes Element von M in einer Menge in P vorkommt:
USEP S = M, Und

» die Mengen in P paarweise disjunkt sind:
SNS =0firS,SePmitS+#S.
Die Mengen in P heissen Blocke.
M={ei,...,es}
» P = {{e1,es}, {e3}, {e2, e5}} ist eine Partition von M.
» P, = {{e1, e, e5},{e3}} ist keine Partition von M.
» P3={{e,es,e5},{e3},{e, e5}} ist keine Partition von M.
» Py ={{er},{ex},{e3},{es},{es}} ist eine Partition von M.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 21 /24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Aquivalenzrelation allgemein

Definition (Aquivalenzrelation)

Eine Aquivalenzrelation auf einer Menge M ist eine
symmetrische, transitive und reflexive Relation R C M x M.
Wir schreiben a ~ b fiir (a, b) € R und sagen a ist dquivalent zu b.

» symmetrisch: a ~ b impliziert b ~ a
P transitiv: a ~ b und b ~ ¢ impliziert a ~ ¢

> reflexiv: fir alle e € M: e~ e

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 22 /24

C3. Union-Find Zusammenhangskomponenten und Aquivalenzklassen

Aquivalenzklassen

Definition (Aquivalenzklassen)

Sei R eine Aquivalenzrelation auf der Menge M.
Die Aquivalenzklasse von a € M ist die Menge

[a] ={be M |a~ b}.

» Die Menge aller Aquivalenzklassen ist eine Partition von M.

> Umgekehrt:
Fiir Partition P definiere R = {(x,y) | 3B € P : x,y € B}
(also x ~ y genau dann, wenn x und y im gleichen Block).
Dann ist R eine Aquivalenzrelation.

> Koénnen Partitionen als Aquivalenzklassen betrachten und
umgekehrt.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 23 /24

C3. Union-Find

Zusammenhangskomponenten und Aquivalenzklassen

Union-Find und Aquivalenzen

| 2

>

>

Gegeben: endliche Menge M,
Sequenz s von Aquivalenzen a ~ b iiber M

Fasse Aquivalenzen als Kanten in Graphen
mit Knotenmenge M auf.

Die Zusammenhangskomponenten entsprechen den
Aquivalenzklassen der feinsten Aquivalenzrelation,
die alle Aquivalenzen aus s enthalt.

» keine ,,unndtigen” Aquivalenzen

Wir konnen die Union-Find-Datenstruktur zur
Bestimmung der Aquivalenzklassen verwenden.

G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 2. Mai 2019 24 /24

	Union-Find
	

	Zusammenhangskomponenten und Äquivalenzklassen
	

