Algorithmen und Datenstrukturen

C2. Graphenexploration: Anwendungen

Gabriele Roger

Universitat Basel

25. April 2019

Zusammenfas:

Erinnerung: Graphenexploration

m Aufgabe: Gegeben einen Knoten v, besuche alle Knoten, die
von v aus erreichbar sind.

m Wird oft als Teil anderer Graphenalgorithmen benétigt.

m Tiefensuche: erst einmal moglichst tief in den Graphen
(weit weg von v)

m Breitensuche: erst alle Nachbarn, dann Nachbarn der
Nachbarn, ...

Reprasentation

Graphen: Ubersicht

—{ Erreichbarkeit

Minimale
Spannbdume

Kiirzeste
Pfade

| Andere
Graphenprobleme

. Zusammenhangs-
Exploration —
komponenten
| Kiirzeste
Pfade

~{ Zykelerkennung

Topologische
Sortierung

Erreichbarkeit

Erreichbarkeit
[e] Jele}

Graphen: Ubersicht

Reprasentation —

: Zusammenhangs-
- Exploration L
komponenten
|| Kiirzeste
Pfade
Minimale
Spannbiume *I Zykelerkennung
i Kiirzeste | Topologische
Pfade Sortierung
L] Andere
Graphenprobleme

Erreichbarkeit Zusammenhang Zusammenf.

00e0

Mark-and-Sweep-Speic

Ziel: Gib Speicherplatz frei, der von nicht mehr zugreifbaren
Objekten belegt wird.

m Gerichteter Graph: Objekte als Knoten,
Referenzen auf Objekte als Kanten

m Ein Bit pro Objekt fiir Markierung in Speicherbereinigung

m Mark: Markiere in regelmassigen Abstanden alle erreichbaren
Objekte.

m Sweep: Gib alle nicht markierten Objekte frei.

Erreichbarkeit Zusammenhang Kiirzeste Pfade Azyklische Graphen Zusammenfassur

[eJe]e]]

Zauberstab in Bildbearbeitung

Toolbox - Tool Options

Tool Options
Fuzzy Select

Antialiasing

Feather edges

Select transparent areas
§ | sample merged

Zusammenhang
00000000

Zusammenhang

Zusammenhang
[e] leleleleele)

Graphen: Ubersicht

Reprisentation | - Erreichbarkeit |

| Kirzeste
Pfade

Minimale
Spannb3ume ~| Zykelerkennung |
L Kiirzeste | Topologische
Pfade Sortierung
L] Andere
Graphenprobleme

Erreichbarkeit Zusammenhang

Zusammenfassung
[e]e] le]ele]ele] ole

Zusammenhangskomponenten ungerichteter Graphen

Ungerichteter Graph

m Zwei Knoten v und v sind in der gleichen
Zusammenhangskomponente, wenn
es einen Pfad zwischen v und v gibt.

(7))
(5) (9)

(0)—(1)
oo
(4)

Zusammenhang
[e]e]e] lelelele)

Zusammenhangskomponenten: Interface

Wir mochten folgendes Interface implementieren:

class ConnectedComponents:
Vorverarbeitender Konstruktor
def __init__(graph: UndirectedGraph) -> None

def connected(nodel: int, node2: int) -> bool

1
2
3
4
5 # Sind Knoten nodel und node2 verbunden?
6
7
8 # Anzahl der Zusammenhangskomponenten

9 def count() -> int

11 # Komponentenbezeichner fir node

12 # (zwischen 0 und count()-1)

13 def id(node: int) -> int

Zusammenhang
[e]e]e] lelelele)

Zusammenhangskomponenten: Interface

Wir mochten folgendes Interface implementieren:

class ConnectedComponents:
Vorverarbeitender Konstruktor
def __init__(graph: UndirectedGraph) -> None

def connected(nodel: int, node2: int) -> bool

1
2
3
4
5 # Sind Knoten nodel und node2 verbunden?
6
7
8 # Anzahl der Zusammenhangskomponenten

9 def count() -> int

11 # Komponentenbezeichner fir node

12 # (zwischen 0 und count()-1)

13 def id(node: int) -> int

Idee: Folge von Graphexplorationen bis alle Knoten besucht sind.
ID eines Knoten entspricht Iteration, in der er besucht wurde

Zusammenhang
[e]e]ee] lelele]

Zusammenhangskomponenten: Algorithmus

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

def

def

class ConnectedComponents:

__init__(self, graph):
self.id = [None] * graph.no_nodes()
self.curr_id = 0
visited = [False] * graph.no_nodes()
for node in range(graph.no_nodes()):
if not visited[node]:
self .dfs(graph, node, visited)
self.curr_id += 1

dfs(self, graph, node, visited):
if visited[node]:
return
visited[node] True
self.id[node] = self.curr_id
for n in graph.neighbours(node):
self.dfs(graph, n, visited)

Wie sehen connected, count und id aus?

Zusammenfassung

Erreichbarkeit Zusammenhang
[e]e]e]e] O0000e00

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

m Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G.

Zusammenhang ade A e e Zusammenfas:

O0000e00

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

m Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G.

m G ist stark zusammenhangend, wenn von jedem Knoten zu
jedem anderen Knoten ein gerichteter Pfad existiert.

Zusammenhang ade A G e Zusammenfas:

O0000e00

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

m Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G.

m G ist stark zusammenhangend, wenn von jedem Knoten zu
jedem anderen Knoten ein gerichteter Pfad existiert.

m Eine starke Zusammenhangskomponente von G ist ein
maximal grosser Teilgraph, der stark zusammenhangend ist.

Starke Zusammenhangskomponenten

o—mn ¢
NI
0’9 8 (D—®)

Erreichbarkeit

,,,

Starke Zusammenhangskomponenten

(0 —(1)
0:9‘8 GQG

Erreichbarkeit Zusammenhang Zusammenfassung

O000000e

Starke Zusammenhangskomponenten

Kosaraju-Algorithmus

m Gegeben Graph G = (V, E), berechne zunichst ein
umgekehrte Postorderreihenfolge P (fiir alle Knoten) des
Graphen GR = (V, {(v,u) | (u,v) € E}) (alle Kanten
umgedreht).

m Fiihre eine Folge von Explorationen in G aus.
Wiéhle dabei als ndchsten Startknoten jeweils den
ersten noch unbesuchten Knoten in P.

m Alle Knoten, die innerhalb einer Exploration erreicht werden,
sind in der gleichen starken Zusammenhangskomponente.

Kiirzeste Pfade

@00000

Kirzeste Pfade

Kiirzeste Pfade
[o] YoloYole)

Graphen: Ubersicht

Représentation —| Erreichbarkeit

. Zusammenhangs-
- Exploration L
komponenten
Minimale
Spannb3ume ~| Zykelerkennung |
B Kiirzeste || Topologische
Pfade Sortierung
L] Andere
Graphenprobleme

Kiirzeste Pfade
00000

Kiirzeste-Pfade-Problem

Kiirzeste-Pfade-Problem mit einem Startknoten

m Gegeben: Graph und Startknoten s
m Anfrage fiir Knoten v

m Gibt es Pfad von s nach v?
m Wenn ja, was ist der kiirzeste Pfad?

m Engl. single-source shortest paths, SSSP

Kiirzeste Pfade
000800

Kiirzeste Pfade: Idee

m Breitensuche besucht die Knoten mit aufsteigendem
(minimalen) Abstand vom Startknoten.

Zusammenfas:

m Erster Besuch eines Knoten passiert auf kiirzestem Pfad.

m |dee: Verwende Pfad aus induzierten Suchbaum

Kiirzeste Pfade
000000

Kiirzeste Pfade: Algorithmus

1 class SingleSourceShortestPaths:

2 def __init__(self, graph, start_node):

3 self.graph = graph

4 self .predecessor = [None] * graph.no_nodes()

5 self.predecessor[start_node] = start_node

6

7 # precompute predecessors with beadth-first search with
8 # self.predecessors used for detecting visited nodes

9 queue = deque()

10 qugue.appen?(start_node) Im Prinzip wie gehabt
11 while queue:

12 v = queue.popleft() (nur a|5|<|asse)

13 for s in graph.successors(v):

14 if self.predecessor[s] is None:

15 self .predecessor[s] = v

16 queue . append (s)
17

Kiirzeste Pfade
00000e

Kiirzeste Pfade: Algorithmus (Fortsetzung)

19 def has_path_to(self, node):
20 return self.predecessor[node] is not None
21
22 def get_path_to(self, node):
23 if not self.has_path_to(node):
24 return None
25 if self.predecessor[node] == node: # start node
26 return [node]
27 pre = self.predecessor[node]
28 path = self.get_path_to(pre)
29 path.append(node)
30 return path
Laufzeit?

Spater: Kiirzeste Pfade mit Kantengewichten

Azyklische Graphen
@®0000000000

Azyklische Graphen

Azyklische Graphen
0Oe000000000

Graphen: Ubersicht

Représentation —| Erreichbarkeit

Zusammenhangs-
komponenten

| Kirzeste
Pfade

mbsume || Zokelerkennung
Spannbdume

Exploration

| Kiirzeste || Topologische
Pfade Sortierung
Andere

| Graphenprobleme

Azyklische Graphen
[e]e] lelelelelelele]e)

Erkennung von azyklischen Graphen

Definition (Gerichteter, azyklischer Graph)

Ein gerichteter, azyklischer Graph (directed acyclic graph, DAG)
ist ein gerichteter Graph, der keine gerichteten Zyklen enthilt.

Erreichbarkeit Zusammenhang K *fade Azyklische Graphen Zusammenfassung
5 00®00000000

Erkennung von azyklischen Graphen

Definition (Gerichteter, azyklischer Graph)

Ein gerichteter, azyklischer Graph (directed acyclic graph, DAG)
ist ein gerichteter Graph, der keine gerichteten Zyklen enthilt.

Aufgabe: Entscheide, ob ein gerichteter Graph
einen Zyklus enthalt. Falls ja, gib einen Zyklus aus.

Azyklische Graphen
000e0000000

Kriterium fiir Zykelfreiheit

Induzierter Suchbaum einer
Tiefensuche (orange) und
mogliche andere Kanten

Azyklische Graphen Zusammenfas:

000e0000000

Induzierter Suchbaum einer
Tiefensuche (orange) und
mogliche andere Kanten

Der (erreichbare Teil-) Graph
ist genau dann azyklisch, wenn
keine Riickwartskante existiert.

Azyklische Graphen Zusammenfas:

000e0000000

Induzierter Suchbaum einer
Tiefensuche (orange) und
mogliche andere Kanten

Der (erreichbare Teil-) Graph
ist genau dann azyklisch, wenn
keine Riickwartskante existiert.

Idee: Merke dir Knoten auf aktuellem Pfad in Tiefensuche

Azyklische Graphen
[e]e]ele] Telelelele]e)

Zykeltest: Algorithmus

1 class DirectedCycle:

2 def __init__(self, graph):

3 self .predecessor = [None] * graph.no_nodes()

4 self .on_current_path = [False] * graph.no_nodes()
5 self.cycle = None

6 for node in range(graph.no_nodes()):

7 if self.has_cycle():

8
9

break
if self.predecessor[node] is None:
10 self.predecessor[node] = node
11 self.dfs(graph, node) ~_
12 Wiederholte Tiefen-
13 def has_cycle(self): suchen, so dass am

14 return self.cycle is not None
v Ende alle Knoten

besucht wurden

Erreichbarkeit mmenhang K Azyklische Graphen

0O0000e00000

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True
18 for s in graph.successors(node):
19 if self.has_cycle():

20 return

21 if self.on_current_path[s]:

22 self.predecessor[s] = node
23 self .extract_cycle(s)

24 if self.predecessor[s] is None:
25 self.predecessor[s] = node
26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Erreichbarkeit mmenhang K Azyklische Graphen

0O0000e00000

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]: /\ktuaHsiere, ob
22 self.predecessor[s] = node Knoten auf aktuellem
23 self .extract_cycle(s) .

24 if self.predecessor[s] is None: Pfad ist.

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Erreichbarkeit mmenhang K Azyklische Graphen

0O0000e00000

Zykeltest: Algorithmus (Fortsetzung)

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True

18 for s in graph.successors(node):

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]: Aktualisiere. ob

22 Zyklus self.predecessor[s] = node K Y
noten auf aktuellem

23 gefunden self .extract_cycle(s) i

24 if self.predecessor[s] is None: Pfad ist.

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Azyklische Graphen
0O0000e00000

Zykeltest: Algorithmus (Fortsetzung)

Brich ab, wenn

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True irgendvvo ZykJus

18 for s in graph.successors(node) : gefunden.

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]: Aktualisiere. ob

22 Zyklus self.predecessor[s] = node K Y
noten auf aktuellem

23 gefunden self .extract_cycle(s) i

24 if self.predecessor[s] is None: Pfad ist.

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

Erreichbarkeit mmenhang K Azyklische Graphen

00000080000

Zykeltest: Algorithmus (Fortsetzung)

Bei Aufruf von extract_cycle liegt node auf einem Zyklus in
self.predecessor.

29 def extract_cycle(self, node):

30 self.cycle = deque()

31 current = node

32 self.cycle.appendleft(current)

33 while True:

34 current = self.predecessor[current]
35 self.cycle.appendleft (current)

36 if current == node:

37 return

Azyklische Graphen
00000008000

Graphen: Ubersicht

Représentation —| Erreichbarkeit

. Zusammenhangs-
- Exploration L
komponenten
|| Kiirzeste
Pfade
Minimale
Spannb3ume ~| Zykelerkennung |
|| Kiirzeste
Pfade
L] Andere
Graphenprobleme

Erreichbarkeit Azyklische Graphen Zusammenfassung

00000000800

Topologische Sortierung

Definition

Eine topologische Sortierung eines azyklischen, gerichteten
Graphen G = (V, E), ist eine Nummerierung no: V — N der
Knoten, so dass fiir jede Kante (u, v) gilt, dass no(u) < no(v).

Zum Beispiel relevant fiir Ablaufplanung:
Kante (u, v) driickt aus, dass u vor v ,erledigt” werden muss.

Azyklische Graphen

000000000 e0

Topologische Sortierung: lllustration

®- G

\ @

&\
®

OSOSCMOSC=OPS

Erreichbarkeit

>fade Azyklische Graphen Zusamment,
00000000000 oo

Topologische Sortierung: Algorithmus

Fiir den erreichbaren Teilgraphen eines azyklischenen Graphen ist
die umgekehrte Depth-First-Postorder-Knotenreihenfolge eine
topologische Sortierung.

Algorithmus:

m Folge von Tiefensuchen-Aufrufen (fiir bisher unbesuchte
Knoten) bis alle Knoten besucht.

m Speichere jeweils umgekehrte Postorderreihenfolge
P; fiir i-te Suche

m Sei k Anzahl der Suchen. Dann ergibt die Aneinanderreihung
von Py, ..., Py eine topologische Sortierung.

Zusammenfassung
[Yo

Zusammenfassung

Zusammenfassung

oe

Zusammenfassung

Wir haben eine Reihe von Anwendungen der Graphenexploration
betrachtet:

m Erreichbarkeit

m Zusammenhangskomponenten
m Kiirzeste Pfade

m Zykelerkennung
[

Topologische Sortierung

	Erreichbarkeit
	

	Zusammenhang
	

	Kürzeste Pfade
	

	Azyklische Graphen
	

	Zusammenfassung
	

