Algorithmen und Datenstrukturen

C2. Graphenexploration: Anwendungen

Gabriele Roger

Universitat Basel

25. April 2019

Algorithmen und Datenstrukturen
25. April 2019 — C2. Graphenexploration: Anwendungen

C2.1 Erreichbarkeit

C2.2 Zusammenhang

C2.3 Kiirzeste Pfade

C2.4 Azyklische Graphen

C2.5 Zusammenfassung

G. Roger (Universitit Basel)

Algorithmen und Datenstrukturen

25. April 2019

2/

35

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 1/35
Erinnerung: Graphenexploration
> Aufgabe: Gegeben einen Knoten v, besuche alle Knoten, die
von v aus erreichbar sind.
» Wird oft als Teil anderer Graphenalgorithmen benétigt.
» Tiefensuche: erst einmal moglichst tief in den Graphen
(weit weg von v)
» Breitensuche: erst alle Nachbarn, dann Nachbarn der
Nachbarn, . ..
G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 3 /35

Graphen: Ubersicht

G. Réger (Universitit Basel)

Reprasentation

—{ Erreichbarkeit

Exploration

Zusammenhangs-
komponenten

Minimale
Spannbdume

Kirzeste
Pfade

| Andere
Graphenprobleme

Algorithmen und Datenstrukturen

Kiirzeste

~{ Zykelerkennung

Topologische
Sortierung

25. April 2019

4/

C2. Graphenexploration: Anwendungen Erreichbarkeit

C2.1 Erreichbarkeit

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 5 /35

C2. Graphenexploration: Anwendungen Erreichbarkeit

Graphen: Ubersicht

Zusammenhangs-
komponenten

Exploration =

Kiirzeste
Pfade

Minimale
I { Zykelerkennung
| Kiirzeste || Topologische
Pfade Sortierung
] Andere
Graphenprobleme

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 6 /35

C2. Graphenexploration: Anwendungen Erreichbarkeit

Mark-and-Sweep-Speicherbereinigung

Ziel: Gib Speicherplatz frei, der von nicht mehr zugreifbaren
Objekten belegt wird.

» Gerichteter Graph: Objekte als Knoten,
Referenzen auf Objekte als Kanten

» Ein Bit pro Objekt fiir Markierung in Speicherbereinigung

» Mark: Markiere in regelmassigen Abstanden alle erreichbaren
Objekte.
> Sweep: Gib alle nicht markierten Objekte frei.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 7/ 35

C2. Graphenexploration: Anwendungen Erreichbarkeit

Zauberstab in Bildbearbeitung

® Toolbox - Tool Options

7 Antialiasing
7 Feather edges

Select transparent areas
sample merged

m;huld b

Select by: Value

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 8 / 35

C2. Graphenexploration: Anwendungen Zusammenhang

C2.2 Zusammenhang

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 9 /35

C2. Graphenexploration: Anwendungen Zusammenhang

Graphen: Ubersicht

Reprasentation —{ Erreichbarkeit

Exploration

| Kiirzeste
Pfade
Minimale
I ~{ Zykelerkennung
| Kiirzeste || Topologische
Pfade Sortierung
] Andere
Graphenprobleme

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 10 / 35

C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten ungerichteter Graphen

Ungerichteter Graph

» Zwei Knoten v und v sind in der gleichen
Zusammenhangskomponente, wenn
es einen Pfad zwischen v und v gibt.

o—o 1°
‘o‘eoe
o oo

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 11 / 35

C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten: Interface

Wir méchten folgendes Interface implementieren:

1 class ConnectedComponents:

2 # Vorverarbeitender Konstruktor

3 def __init__(graph: UndirectedGraph) -> None
4

5 # Sind Knoten mnodel und node2 verbunden?

6 def connected(nodel: int, node2: int) -> bool
7

8 # Anzahl der Zusammenhangskomponenten

9 def count() -> int

10

11 # Komponentenbezeichner fiur node

12 # (zwischen 0 und count()-1)

13 def id(node: int) -> int

Idee: Folge von Graphexplorationen bis alle Knoten besucht sind.
ID eines Knoten entspricht lteration, in der er besucht wurde

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 12 / 35

C2. Graphenexploration: Anwendungen

Zusammenhangskomponenten: Algorithmus

1 class ConnectedComponents:

2 def __init__(self, graph):

3 self.id = [None] * graph.no_nodes()

4 self.curr_id = 0

5 visited = [False] * graph.no_nodes()

6 for node in range(graph.no_nodes()):

7 if not visited[node]:

8 self .dfs(graph, node, visited)
9 self.curr_id += 1

10

11 def dfs(self, graph, node, visited):
12 if visited[node]:

13 return

14 visited[node] = True

15 self.id[node] = self.curr_id

16 for n in graph.neighbours(node):
17 self .dfs(graph, n, visited)

Wie sehen connected, count und id aus?

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

C2. Graphenexploration: Anwendungen Zusammenhang

Zusammenhangskomponenten gerichteter Graphen

Gerichteter Graph G

» Ignoriert man die Richtung der Kanten, ist jede
Zusammenhangskomponente des resultierenden ungerichteten
Graphen eine schwache Zusammenhangskomponente von G.

> G ist stark zusammenhadngend, wenn von jedem Knoten zu
jedem anderen Knoten ein gerichteter Pfad existiert.

» Eine starke Zusammenhangskomponente von G ist ein
maximal grosser Teilgraph, der stark zusammenhangend ist.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 14 / 35

C2. Graphenexploration: Anwendungen

Starke Zusammenhangskomponenten

o—oll ©
}3‘8 00
o ol o

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

C2. Graphenexploration: Anwendungen Zusammenhang

Starke Zusammenhangskomponenten

Kosaraju-Algorithmus

» Gegeben Graph G = (V, E), berechne zunichst ein
umgekehrte Postorderreihenfolge P (fiir alle Knoten) des
Graphen GR = (V {(v,u) | (u,v) € E}) (alle Kanten
umgedreht).

» Fiihre eine Folge von Explorationen in G aus.

Wahle dabei als ndchsten Startknoten jeweils den
ersten noch unbesuchten Knoten in P.

» Alle Knoten, die innerhalb einer Exploration erreicht werden,

sind in der gleichen starken Zusammenhangskomponente.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 16 / 35

C2. Graphenexploration: Anwendungen

C2.3 Kiirzeste Pfade

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

Kiirzeste Pfade

25. April 2019 17 / 35

C2. Graphenexploration: Anwendungen

Graphen: Ubersicht

Reprasentation —{ Erreichbarkeit
. Zusammenhangs-
Exploration —
komponenten

Minimale
Spannb3ume

Kiirzeste
Pfade

Andere

| Graphenprobleme

G. Roger (Universitit Basel)

Algorithmen und Datenstrukturen

~{ Zykelerkennung ‘

Topologische
Sortierung

Kiirzeste Pfade

25. April 2019 18 / 35

C2. Graphenexploration: Anwendungen

Kiirzeste-Pfade-Problem

Kirzeste-Pfade-Problem mit einem Startknoten

» Gegeben: Graph und Startknoten s
» Anfrage fiir Knoten v

» Gibt es Pfad von s nach v?
» Wenn ja, was ist der kiirzeste Pfad?

» Engl. single-source shortest paths, SSSP

G. Réger (Universitat Basel) Algorithmen und Datenstrukturen

Kiirzeste Pfade

25. April 2019 19 / 35

C2. Graphenexploration: Anwendungen

Kirzeste Pfade: Idee

» Breitensuche besucht die Knoten mit aufsteigendem
(minimalen) Abstand vom Startknoten.

» Erster Besuch eines Knoten passiert auf kiirzestem Pfad.

» |dee: Verwende Pfad aus induzierten Suchbaum

G. Réger (Universitat Basel)

Algorithmen und Datenstrukturen

Kiirzeste Pfade

25. April 2019 20 / 35

C2. Graphenexploration: Anwendungen

Kiirzeste Pfade: Algorithmus

Kiirzeste Pfade

1 class SingleSourceShortestPaths:

2 def __init__(self, graph, start_node):

3 self.graph = graph

4 self .predecessor = [None] * graph.no_nodes()

5 self.predecessor[start_node] = start_node

6

7 # precompute predecessors with beadth-first search with
8 # self.predecessors used for detecting visited nodes

9 queue = deque()

10 queue . append(start_node)

1 while queue: Im Prinzip wie gehabt
' v = queue.popleft() (nur als Klasse)

13 for s in graph.successors(v):

14 if self.predecessor[s] is None:

15 self .predecessor[s] = v

16 queue. append(s)

17

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

25. April 2019 21 /35

C2. Graphenexploration: Anwendungen

Kiirzeste Pfade: Algorithmus (Fortsetzung)

Kiirzeste Pfade

19 def has_path_to(self, node):
20 return self.predecessor[node] is not None
21
22 def get_path_to(self, node):
23 if not self.has_path_to(node):
24 return None
25 if self.predecessor[node] == node: # start node
26 return [node]
27 pre = self.predecessor [node]
28 path = self.get_path_to(pre)
29 path.append(node)
30 return path
Laufzeit?

Spater: Kiirzeste Pfade mit Kantengewichten

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

25. April 2019 22 /35

C2. Graphenexploration: Anwendungen

C2.4 Azyklische Graphen

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Azyklische Graphen

25. April 2019 23 / 35

C2. Graphenexploration: Anwendungen

Graphen: Ubersicht

Reprasentation —{ Erreichbarkeit

. Zusammenhangs-
— Exploration =
komponenten
| Kiirzeste
Minimale
Spannbiume _
i Kiirzeste || Topologische
Pfade Sortierung
] Andere
Graphenprobleme

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Azyklische Graphen

25. April 2019 24 / 35

C2. Graphenexploration: Anwendungen Azyklische Graphen

Erkennung von azyklischen Graphen

Definition (Gerichteter, azyklischer Graph)

Ein gerichteter, azyklischer Graph (directed acyclic graph, DAG)
ist ein gerichteter Graph, der keine gerichteten Zyklen enthilt.

Aufgabe: Entscheide, ob ein gerichteter Graph
einen Zyklus enthalt. Falls ja, gib einen Zyklus aus.

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 25 / 35

C2. Graphenexploration: Anwendungen Azyklische Graphen

Kriterium fiir Zykelfreiheit

Induzierter Suchbaum einer
Tiefensuche (orange) und
mogliche andere Kanten

Der (erreichbare Teil-) Graph
ist genau dann azyklisch, wenn
keine Riickwartskante existiert.

Idee: Merke dir Knoten auf aktuellem Pfad in Tiefensuche

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 26 / 35

C2. Graphenexploration: Anwendungen Azyklische Graphen

Zykeltest: Algorithmus

1 class DirectedCycle:
2 def __init__(self, graph):

3 self .predecessor = [None] * graph.no_nodes()

4 self.on_current_path = [False] * graph.no_nodes()
5 self.cycle = None

6 for node in range(graph.no_nodes()):

7 if self.has_cycle():

8
9

break
if self.predecessor[node] is None:
10 self .predecessor[node] = node
11 self .dfs(graph, node) ~_
12 Wiederholte Tiefen-
13 def has_cycle(self): suchen, so dass am

14 return self.cycle is not None
y Ende alle Knoten

besucht wurden

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 27 / 35

C2. Graphenexploration: Anwendungen Azyklische Graphen

Zykeltest: Algorithmus (Fortsetzung)

Brich ab, wenn

16 def dfs(self, graph, node):

17 self.on_current_path[node] = True irgendwo Zyklus

18 for s in graph.successors(node): gefunden.

19 if self.has_cycle():

20 return

21 if self.on_current_path[s]: Aktualisiere. ob

22 Zyklus 7 self .predecessor[s] = node K ,
noten auf aktuellem

23 gefunden self.extract_cycle(s) ;

24 if self.predecessor[s] is None: Pfad ist.

25 self.predecessor[s] = node

26 self.dfs(graph, s)

27 self.on_current_path[node] = False

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 28 / 35

C2. Graphenexploration: Anwendungen

Zykeltest: Algorithmus (Fortsetzung)

Bei Aufruf von extract_cycle liegt node auf einem Zyklus in
self.predecessor.

29 def extract_cycle(self, node):

30 self.cycle = deque()

31 current = node

32 self.cycle.appendleft (current)

33 while True:

34 current = self.predecessor[current]
35 self.cycle.appendleft (current)

36 if current == node:

37 return

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019

Azyklische Graphen

29 / 35

C2. Graphenexploration: Anwendungen

Graphen: Ubersicht

Azyklische Graphen

Reprasentation —{ Erreichbarkeit

Zusammenhangs-
komponenten

Exploration =

Kiirzeste
Pfade

Minimale
Spannb3ume

~{ Zykelerkennung

Kiirzeste
Pfade

] Andere
Graphenprobleme

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 30 /35

C2. Graphenexploration: Anwendungen

Topologische Sortierung

Definition

Eine topologische Sortierung eines azyklischen, gerichteten
Graphen G = (V/, E), ist eine Nummerierung no: V — N der
Knoten, so dass fiir jede Kante (u, v) gilt, dass no(u) < no(v).

Zum Beispiel relevant fiir Ablaufplanung:
Kante (u, v) driickt aus, dass u vor v ,erledigt" werden muss.

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019

Azyklische Graphen

31 /35

C2. Graphenexploration: Anwendungen Azyklische Graphen

Topologische Sortierung: lllustration

(4) 1

oo
"%\o 0
o \Lw

T

o1 L w N

(@)

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 32 /35

C2. Graphenexploration: Anwendungen Azyklische Graphen

Topologische Sortierung: Algorithmus

Theorem

Fiir den erreichbaren Teilgraphen eines azyklischenen Graphen ist
die umgekehrte Depth-First-Postorder-Knotenreihenfolge eine
topologische Sortierung.

Algorithmus:
» Folge von Tiefensuchen-Aufrufen (fiir bisher unbesuchte
Knoten) bis alle Knoten besucht.
» Speichere jeweils umgekehrte Postorderreihenfolge
P; fiir i-te Suche
> Sei k Anzahl der Suchen. Dann ergibt die Aneinanderreihung
von Py, ..., Py eine topologische Sortierung.

C2. Graphenexploration: Anwendungen

C2.5 Zusammenfassung

G. Roger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

25. April 2019

34 /35

G. Roéger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 33 /35
C2. Graphenexploration: Anwendungen Zusammenfassung
Zusammenfassung

Wir haben eine Reihe von Anwendungen der Graphenexploration
betrachtet:

» Erreichbarkeit

» Zusammenhangskomponenten
> Kiirzeste Pfade

» Zykelerkennung

> Topologische Sortierung

G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 25. April 2019 35 /35

	Erreichbarkeit
	

	Zusammenhang
	

	Kürzeste Pfade
	

	Azyklische Graphen
	

	Zusammenfassung
	

