
Algorithmen und Datenstrukturen
B8. Hashtabellen1

Marcel Lüthi and Gabriele Röger

Universität Basel

11. April 2019

1
Folien basieren auf Vorlesungsfolien von Sedgewick & Wayne

https://algs4.cs.princeton.edu/lectures/34Hashtables-2x2.pdf

https://algs4.cs.princeton.edu/lectures/34Hashtables-2x2.pdf


Einführung Hashfunktionen Hashtabellen

Einführung



Einführung Hashfunktionen Hashtabellen

Symboltabellen: Übersicht

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

BST N N N log2(N) log2(N)
√
N

Rot-Schwarz Bäume log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)

Frage

Geht es noch besser?



Einführung Hashfunktionen Hashtabellen

Hashtabellen: Idee

Elemente werden in Array gespeichert, wobei Position durch
Schlüssel bestimmt ist.

Wichtigstes Werkzeug: Hashfunktion

Berechnet Index aus Schlüssel

Herausforderungen:

Hashfunktion berechnen

Kollisionen (2 unterschiedliche Schlüssel
haben gleichen Hashwert)



Einführung Hashfunktionen Hashtabellen

Hashtabellen: Idee

Elemente werden in Array gespeichert, wobei Position durch
Schlüssel bestimmt ist.

Wichtigstes Werkzeug: Hashfunktion

Berechnet Index aus Schlüssel

Herausforderungen:

Hashfunktion berechnen

Kollisionen (2 unterschiedliche Schlüssel
haben gleichen Hashwert)



Einführung Hashfunktionen Hashtabellen

Hashtabellen: Idee

Elemente werden in Array gespeichert, wobei Position durch
Schlüssel bestimmt ist.

Wichtigstes Werkzeug: Hashfunktion

Berechnet Index aus Schlüssel

Herausforderungen:

Hashfunktion berechnen

Kollisionen (2 unterschiedliche Schlüssel
haben gleichen Hashwert)



Einführung Hashfunktionen Hashtabellen

Hashfunktionen



Einführung Hashfunktionen Hashtabellen

Hashfunktion: Ziele

Konsistenz: Gleicher Schlüssel sollte immer gleichen Hashwert
ergeben.

Hashfunktion sollte effizient berechnet werden können.

Schlüssel sollten gleichverteilt sein.

gleiche Wahrscheinlichkeit für jedes Feld



Einführung Hashfunktionen Hashtabellen

Quiz: Hashfunktion

Was sind mögliche Hashfunktionen für

Integer (32 Bit Ganzzahl)

Datum

Strings

Bilder

Wie aufwändig ist jeweils die Berechnung der Hashfunktion?



Einführung Hashfunktionen Hashtabellen

Hashfunktionen in Java

Alle Java Klassen erben Methode hashCode

Anforderung:

Falls x.equals(y) dann x.hashCode() == y.hashCode()

Gewünscht:

Falls !x.equals(y) dann x.hashCode() ! = y.hashCode()

Wenn immer equals überschrieben wird, muss auch hashCode

überschrieben werden.



Einführung Hashfunktionen Hashtabellen

Beispiele von Hashfunktionen in Java

Integer:

public int hashCode() {

return this.value;

}



Einführung Hashfunktionen Hashtabellen

Beispiele von Hashfunktionen in Java

String:

public int hashCode() {

int h = 0;

if (value.length > 0) {

char val[] = value;

for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i];

}

}

return h;

}



Einführung Hashfunktionen Hashtabellen

Beispiele von Hashfunktionen in Java

LinkedList:

public int hashCode() {

int hashCode = 1;

for (E e : this)

hashCode = 31 * hashCode + (e==null ? 0 : e.hashCode());

return hashCode;

}



Einführung Hashfunktionen Hashtabellen

Praktisches Rezept für benutzerdefinierte Typen

public int hashCode()

{

int hash = 17;

hash = 31*hash + field1.hashCode();

hash = 31*hash + field2.hashCode();

hash = 31*hash + field3.hashCode();

...

return hash;

}

Funktioniert gut in Praxis - aber theoretisch nicht optimal.



Einführung Hashfunktionen Hashtabellen

Praktische Tips

Gute Hashfunktionen zu entwerfen ist schwierig!

Einige Tips:

Alle Bits im Schlüssel sollten bei Berechnung gleich
mitberücksichtigt werden.

Verbessert Verteilung!
Experimentell überprüfen (plot?)

Hashing ist klassischer Performancebug. (Alles läuft korrekt
aber Programm ist langsam.)

Hashfunktion auf Effizienz prüfen.
Was ist schneller, Vergleich oder Hash?



Einführung Hashfunktionen Hashtabellen

Hashfuntionen in Python

Hashfunktionen werden via die Methode hash angegeben.

hash ()

Called by built-in function hash() and for operations on members
of hashed collections including set, frozenset, and dict. hash ()

should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to
mix together the hash values of the components of the object that
also play a part in comparison of objects by packing them into a
tuple and hashing the tuple.

Python Language Reference - Section 3: Data Model



Einführung Hashfunktionen Hashtabellen

Modulares Hashing

Werte der Hashfunktion können negativ sein. Wir wollen aber
Werte zwischen 0 und M.

Positiven Hash-wert nehmen und Modulo M rechnen.

In Java:

private int modularHash(Key x) {

return (x.hashCode() & 0x7fffffff) % M;

}

In Python:

def modularHash(x):

return (hash(x) % ((sys.maxsize + 1) * 2) % M)



Einführung Hashfunktionen Hashtabellen

Theoretische Analyse von Hashtabellen

Typische Annahme

Die von uns verwendeten Hashfunktionen verteilen die Schlüssel
gleichmäßig und unabhängig voneinander auf die Integer-Werte
zwischen 0 und M − 1.

Bälle werden zufällig in M verschiedene Gefässe verteilt.



Einführung Hashfunktionen Hashtabellen

Kollisionen

Wir können Kollisionen nicht verhindern.

Beispiele relevanter mathematischer Resultate:

Geburtstagsparadox In einer Gruppe von 23 Kindern ist die
Wahrscheinlichkeit 0.5, dass zwei am selben Tag
Geburtstag haben.

Angewandt auf hashing: Anzahl Plätze:
M = 365, Nach N = 23 Elementen bereits
grosse Chance, dass Kollision auftritt.
Allgemein: Wir erwarten Kollision nach ungefähr√
πM/2 Elementen.



Einführung Hashfunktionen Hashtabellen

Kollisionen

Wir können Kollisionen nicht verhindern.

Beispiele relevanter mathematischer Resultate:

Sammelbilderproblem Gegeben M Sammelbilder, wieviele Bilder
muss man ziehen (mit zurücklegen), bevor man jedes
einmal gezogen hat?

Angewandt auf hashing: Wie lange dauert es bis
alle Felder besetzt sind?
Der Erwartungswert wächst mit Θ(M log(M))

Um M = 50 unterschiedliche Sammelbilder zu haben
benötigen wir ungefähr 50 log(50) ≈ 200 Bilder



Einführung Hashfunktionen Hashtabellen

Experimente

IPython Notebooks: Hashtables.ipynb



Einführung Hashfunktionen Hashtabellen

Hashtabellen



Einführung Hashfunktionen Hashtabellen

Hashtabelle: 2 Implementationen

Grundlage ist immer ein Array der Grösse M um N Einträge zu
speichern.
Wichtigste Frage: Wie behandle ich Kollisionen?
2 Strategien

Verkettung (separate chaining)

Jedes Element enthält Verkettete Liste mit allen Schlüssel /
Werte Paaren
M kann kleiner sein als N

Lineare Sondierung (linear probing)
M wird grösser gewählt als N.

Suche nach nächstem freien Platz.



Einführung Hashfunktionen Hashtabellen

Verkettung

Hash: Schlüssel wird auf Zahl zwischen 0 und M − 1
gemappt.

Einfügen: Falls nicht gefunden, am Anfang in Liste enfügen

Suche: Relevante Liste durchsuchen



Einführung Hashfunktionen Hashtabellen

Komplexität

Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schlüsseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme ), dass die Anzahl der Schlüssel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.

Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schlüsseln ist die Anzahl der Vergleiche (Gleichheitstests) für
Einfügungen und erfolglose Suchen ∼ N/M.



Einführung Hashfunktionen Hashtabellen

Komplexität

Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schlüsseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme ), dass die Anzahl der Schlüssel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.

Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schlüsseln ist die Anzahl der Vergleiche (Gleichheitstests) für
Einfügungen und erfolglose Suchen ∼ N/M.



Einführung Hashfunktionen Hashtabellen

Verkettung: Elemente Löschen

Einfache Operation: Element aus relevanter Liste löschen.



Einführung Hashfunktionen Hashtabellen

Verkettung: Grössenanpassung

Ziel: Länge N/M bleibt etwa konstant
Alle Elemente müssen neu gehashed werden.



Einführung Hashfunktionen Hashtabellen

Implementation und Beispielanwendung

IPython Notebooks: Hashtables.ipynb



Einführung Hashfunktionen Hashtabellen

Informatiker des Tages : Arthur Lee Samuel

Arthur Lee Samuel

Professor in Stanford

Mitentwickler von TEX

Pionier in Künstlicher Intelligenz /
Maschinellem lernen

Entwickelte erstes erfolgreiches
Dame-Programm.

Erste Implementation der linearen
Sondierungsstrategie in
Hashtabellen (1953)



Einführung Hashfunktionen Hashtabellen

Lineares sondieren

Voraussetzung: M > N

Hash: Schlüssel wird auf Zahl i zwischen 0 und M − 1
gemappt.

Einfügen: An Position i einfügen.

Falls belegt, probiere Position i + 1, i + 2, ...

Suche: Suche an Index i

Falls nicht leer, aber Eintrag ! = gesuchter
Schlüssel, suche an Position i + 1, i + 2, etc.



Einführung Hashfunktionen Hashtabellen

Lineares sondieren

Voraussetzung: M > N

Hash: Schlüssel wird auf Zahl i zwischen 0 und M − 1
gemappt.

Einfügen: An Position i einfügen.

Falls belegt, probiere Position i + 1, i + 2, ...

Suche: Suche an Index i

Falls nicht leer, aber Eintrag ! = gesuchter
Schlüssel, suche an Position i + 1, i + 2, etc.



Einführung Hashfunktionen Hashtabellen

Lineares sondieren

Voraussetzung: M > N

Hash: Schlüssel wird auf Zahl i zwischen 0 und M − 1
gemappt.

Einfügen: An Position i einfügen.

Falls belegt, probiere Position i + 1, i + 2, ...

Suche: Suche an Index i

Falls nicht leer, aber Eintrag ! = gesuchter
Schlüssel, suche an Position i + 1, i + 2, etc.



Einführung Hashfunktionen Hashtabellen

Lineares sondieren

Voraussetzung: M > N

Hash: Schlüssel wird auf Zahl i zwischen 0 und M − 1
gemappt.

Einfügen: An Position i einfügen.

Falls belegt, probiere Position i + 1, i + 2, ...

Suche: Suche an Index i

Falls nicht leer, aber Eintrag ! = gesuchter
Schlüssel, suche an Position i + 1, i + 2, etc.



Einführung Hashfunktionen Hashtabellen

Lineares sondieren

Voraussetzung: M > N

Hash: Schlüssel wird auf Zahl i zwischen 0 und M − 1
gemappt.

Einfügen: An Position i einfügen.

Falls belegt, probiere Position i + 1, i + 2, ...

Suche: Suche an Index i

Falls nicht leer, aber Eintrag ! = gesuchter
Schlüssel, suche an Position i + 1, i + 2, etc.



Einführung Hashfunktionen Hashtabellen

Lineares sondieren

Voraussetzung: M > N

Hash: Schlüssel wird auf Zahl i zwischen 0 und M − 1
gemappt.

Einfügen: An Position i einfügen.

Falls belegt, probiere Position i + 1, i + 2, ...

Suche: Suche an Index i

Falls nicht leer, aber Eintrag ! = gesuchter
Schlüssel, suche an Position i + 1, i + 2, etc.



Einführung Hashfunktionen Hashtabellen

Lineares sondieren

Voraussetzung: M > N

Hash: Schlüssel wird auf Zahl i zwischen 0 und M − 1
gemappt.

Einfügen: An Position i einfügen.

Falls belegt, probiere Position i + 1, i + 2, ...

Suche: Suche an Index i

Falls nicht leer, aber Eintrag ! = gesuchter
Schlüssel, suche an Position i + 1, i + 2, etc.



Einführung Hashfunktionen Hashtabellen

Lineare Sondierung: Elemente Löschen

Wenn erstes Element in Cluster gelöscht wird, müssen
Nachfolger gelöscht werden.



Einführung Hashfunktionen Hashtabellen

Lineare Sondierung: Grössenanpassung

Ziel: Länge N/M ≤ 1/2

Alle Elemente müssen neu gehashed werden.



Einführung Hashfunktionen Hashtabellen

Implementation und Beispielanwendung

IPython Notebooks: Hashtables.ipynb



Einführung Hashfunktionen Hashtabellen

Clustering

Beobachtung

Lineares Sondieren führt zu Clusterbildung.

Bei Kollision wächst ein Cluster, da das Element am Ende
eingefügt wird.



Einführung Hashfunktionen Hashtabellen

Clustering

Beobachtung

Lange Cluster wachsen schneller als kurze.

Wahrscheinlichkeit in einem
grossen Cluster zu landen ist
grösser.

Quelle: Abb. 3.60, Algorithmen, Wayne & Sedgewick



Einführung Hashfunktionen Hashtabellen

Clustering

Beobachtung

Laufzeit der Suche hängt von Länge der Cluster ab.

Theorem

In einer auf linearer Sondierung basierenden Hashtabelle mit einer
Liste der Grösse M und N = αM Schlüsseln ist die erforderliche
durchschnittliche Anzahl von Sondierungen für erfolgreiches
beziehungsweise erfolgloses Suchen

∼ 1

2

(
1 +

1

1 − α

)
und ∼ 1

2

(
1 +

1

(1 − α)2

)



Einführung Hashfunktionen Hashtabellen

Komplexität

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

BST N N N log2(N) log2(N)
√
N

Rot-Schwarz Bäume log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)
Hashtabellen N N N O(1) O(1) O(1)



Einführung Hashfunktionen Hashtabellen

Diskussion

Wann sollen wir welche Art von Datenstruktur verwenden?

Abbildung: Sedgewick & Wayne, Tabelle 3.15


	Einführung
	

	Hashfunktionen
	

	Hashtabellen
	


