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Symboltabellen: Ubersicht

Worst-case Average-case
Implementation suchen einfligen  18schen  suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Bindre suche logo(N) N N log, () N/2 N
BST N N N log, (N) logo(N) VN
Rot-Schwarz Bdume  log,(N)  logy(N)  logy(N)  log,(N) log,(N)  logy(N)

Frage
Geht es noch besser?
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Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

m Wichtigstes Werkzeug: Hashfunktion
m Berechnet Index aus Schliissel hash(hall) =3

* “hallo”

© ® N o u &> w N » O



Einfiihrung

ooe

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

Index

m Wichtigstes Werkzeug: Hashfunktion
m Berechnet Index aus Schliissel hash(hall) =3

< “welt”

* “hallo”

hash(“welt”) = 1
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Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

Index

m Wichtigstes Werkzeug: Hashfunktion
m Berechnet Index aus Schliissel pasChalo) <3/

< welt”

* hallo

Herausforderungen:

hash(“welt”) = 1

m Hashfunktion berechnen

hash(“apfel”) = 3

m Kollisionen (2 unterschiedliche Schliissel
haben gleichen Hashwert)
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Hashfunktionen
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Hashfunktion: Ziele

m Konsistenz: Gleicher Schliissel sollte immer gleichen Hashwert
ergeben.
m Hashfunktion sollte effizient berechnet werden kdnnen.
m Schliissel sollten gleichverteilt sein.
m gleiche Wahrscheinlichkeit fiir jedes Feld
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Quiz: Hashfunktion

Was sind mogliche Hashfunktionen fiir
m Integer (32 Bit Ganzzahl)
m Datum
m Strings
m Bilder

Wie aufwindig ist jeweils die Berechnung der Hashfunktion?
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Hashfunktionen in Java

Alle Java Klassen erben Methode hashCode
Anforderung:

m Falls x.equals(y) dann x.hashCode() == y.hashCode ()
Gewiinscht:

m Falls !'x.equals(y) dann x.hashCode() ! = y.hashCode()

Wenn immer equals iiberschrieben wird, muss auch hashCode
iiberschrieben werden.

J
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Beispiele von Hashfunktionen in Java

Integer:

public int hashCode() {
return this.value;

}



Einfiihrung Hashfunktionen
00000®000000000

Beispiele von Hashfunktionen in Java

String:

public int hashCode() {
int h = 0;
if (value.length > 0) {
char vall] value;

for (int i = 0; i < value.length; i++) {
h =31 h + vallil;

*

}

return h;
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Beispiele von Hashfunktionen in Java

LinkedList:

public int hashCode() {
int hashCode = 1;
for (E e : this)
hashCode = 31 * hashCode + (e==null ? O : e.hashCode());
return hashCode;



Hashfunktionen

Einfiihrung
000 0000000800000 00

Praktisches Rezept fiir benutzerdefinierte Typen

public int hashCode()

{
int hash = 17;
hash = 31xhash + fieldl.hashCode();
hash = 31x*hash + field2.hashCode();
hash = 31xhash + field3.hashCode();
return hash;

}

Funktioniert gut in Praxis - aber theoretisch nicht optimal.
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Praktische Tips

Gute Hashfunktionen zu entwerfen ist schwierig! J

Einige Tips:
m Alle Bits im Schliissel sollten bei Berechnung gleich
mitberiicksichtigt werden.
m Verbessert Verteilung!
m Experimentell iiberpriifen (plot?)
m Hashing ist klassischer Performancebug. (Alles lauft korrekt
aber Programm ist langsam.)

m Hashfunktion auf Effizienz priifen.
m Was ist schneller, Vergleich oder Hash?
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Hashfuntionen in Python

m Hashfunktionen werden via die Methode __hash__ angegeben.

_hash__(Q)

Called by built-in function hash() and for operations on members
of hashed collections including set, frozenset, and dict. __hash__()
should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to
mix together the hash values of the components of the object that
also play a part in comparison of objects by packing them into a
tuple and hashing the tuple.

Python Language Reference - Section 3: Data Model
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Modulares Hashing

Werte der Hashfunktion kdnnen negativ sein. Wir wollen aber
Werte zwischen 0 und M. J

m Positiven Hash-wert nehmen und Modulo M rechnen.
In Java:

private int modularHash(Key x) {
return (x.hashCode() & Ox7fffffff) % M;
}
In Python:

def modularHash(x):
return (hash(x) % ((sys.maxsize + 1) * 2) % M)
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Theoretische Analyse von Hashtabellen

Typische Annahme

Die von uns verwendeten Hashfunktionen verteilen die Schliissel
gleichmaBig und unabhingig voneinander auf die Integer-Werte
zwischen O und M — 1.

© 9000
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Balle werden zufillig in M verschiedene Gefdsse verteilt.
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Kollisionen

Wir kdnnen Kollisionen nicht verhindern. J

Beispiele relevanter mathematischer Resultate:

Geburtstagsparadox In einer Gruppe von 23 Kindern ist die
Wabhrscheinlichkeit 0.5, dass zwei am selben Tag
Geburtstag haben.
m Angewandt auf hashing: Anzahl Platze:
M = 365, Nach N = 23 Elementen bereits
grosse Chance, dass Kollision auftritt.
m Allgemein: Wir erwarten Kollision nach ungefihr

\/7™M /2 Elementen.
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Kollisionen

Wir kdnnen Kollisionen nicht verhindern. )

Beispiele relevanter mathematischer Resultate:

Sammelbilderproblem Gegeben M Sammelbilder, wieviele Bilder
muss man ziehen (mit zuriicklegen), bevor man jedes
einmal gezogen hat?

m Angewandt auf hashing: Wie lange dauert es bis
alle Felder besetzt sind?
m Der Erwartungswert wéchst mit ©(M log(M))

Um M = 50 unterschiedliche Sammelbilder zu haben
bendtigen wir ungefihr 50 log(50) ~ 200 Bilder
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Experimente

ZJupyter untitied wses

File  Edt View Inset Cell Kemel Help

# | Python [Roo] O
B+ x BB AV N EC coe

= Cellobar & & B

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline
Papulating the interactive namespace from numpy and matplotlib

1n [7]: plot(linspace(0, 1000), (linspace(0

0uL[7]: [<matplotlib.lines.Lie2d at 0x29de
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20 %0 EQ 0

IPython Notebooks: Hashtables.ipynb
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Hashtabelle: 2 Implementationen

Grundlage ist immer ein Array der Grosse M um N Eintrage zu
speichern.
Wichtigste Frage: Wie behandle ich Kollisionen?
2 Strategien
m Verkettung (separate chaining)
m Jedes Element enthilt Verkettete Liste mit allen Schliissel /
Werte Paaren
m M kann kleiner sein als N
m Lineare Sondierung (linear probing)
m M wird grosser gewahlt als N.
® Suche nach nichstem freien Platz.
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Verkettung

Hash: Schliissel wird auf Zahl zwischen 0 und M — 1
gemappt.

Einfligen: Falls nicht gefunden, am Anfang in Liste enfiigen

Suche: Relevante Liste durchsuchen

m
Index -

> null
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Einfiihrung Hashtabellen

Komplexitat

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme ), dass die Anzahl der Schliissel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.
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Komplexitat

Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme ), dass die Anzahl der Schliissel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.

Theorem

| A

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Anzahl der Vergleiche (Gleichheitstests) fiir
Einfiigungen und erfolglose Suchen ~ N /M.

\
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Verkettung: Elemente Loschen

m Einfache Operation: Element aus relevanter Liste 16schen.

Index 7 Index - / m
:Lfi ~ 7 onull Z: — null

: 0 — BE 8a N 7 s o]
;| 1 am .. [ aEm



Verkettung: Grossenanpassung

m Ziel: Lange N/M bleibt etwa konstant
m Alle Elemente miissen neu gehashed werden.
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Implementation und Beispielanwendung

ZJupyter untitied wses

File  Edt View Inset Cell Kemel Help

# | Python [Roo] O
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Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline
Papulating the interactive namespace from numpy and matplotlib

1n [7]: plot(linspace(0, 1000), (linspace(0

) **2))
OuL[7]: [<matplotlib.lines.Lire2D at 0x29ds

08>]
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IPython Notebooks: Hashtables.ipynb
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Informatiker des Tages : Arthur Lee Samuel

m Professor in Stanford

m Mitentwickler von TEX
m Pionier in Kiinstlicher Intelligenz /
Maschinellem lernen
m Entwickelte erstes erfolgreiches
Dame-Programm.
m Erste Implementation der linearen
Sondierungsstrategie in
Hashtabellen (1953)

Arthur Lee Samuel
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Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert S
hash(S)=2

HNEEEEEENE
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Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert E
hash(E)=0

IEEEEEEEEEEEEE
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Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...

Insert A
hash(A)=0

IEEEEEEEEEEEEE
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Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position i + 1,/ 4 2, etc.

Insert A
hash(A)=0
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Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position i + 1,/ 4 2, etc.

Insert R
hash(R)=4
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Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position i + 1,/ 4 2, etc.

Suche A
hash(A)=0
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Lineares sondieren

Voraussetzung: M > N

Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.

Einfligen: An Position i einfligen.
m Falls belegt, probiere Position i +1, i + 2, ...
Suche: Suche an Index i

m Falls nicht leer, aber Eintrag | = gesuchter
Schliissel, suche an Position i + 1,/ 4 2, etc.

Suche A
hash(A)=0
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Lineare Sondierung: Elemente Loschen

m Wenn erstes Element in Cluster geldscht wird, miissen
Nachfolger geloscht werden.

0 1 2 3 4 5 6 7 8 9
Schlussel E A S R X F |
Was ist wenn hash(1)=7?
0 1 2 4 5 7 8 10 11 13 14
il ol e e o e 0

10 13

o

3 6 9 12 15
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Lineare Sondierung: Grossenanpassung

m Ziel: Lange N/M < 1/2
m Alle Elemente miissen neu gehashed werden.

Schlussel E ‘ A “ S ‘ ‘ R ‘ ‘

9 11 12 13 14 15

SRR

s [l 0
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Implementation und Beispielanwendung

ZJupyter untitied wses

File  Edt View Inset Cell Kemel Help
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Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline
Papulating the interactive namespace from numpy and matplotlib

1n [7]: plot(linspace(0, 1000), (linspace(0

) **2))
OuL[7]: [<matplotlib.lines.Lire2D at 0x29ds

08>]
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IPython Notebooks: Hashtables.ipynb
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Clustering

Beobachtung
Lineares Sondieren fiihrt zu Clusterbildung.

m Bei Kollision wachst ein Cluster, da das Element am Ende
eingefiigt wird.

2

o

7 12
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Clustering

Beobachtung

Lange Cluster wachsen schneller als kurze.

9/64-Chance, dass der neue
Schliissel dieses Cluster vergrifert
vorher
« oo [s5sssssss] sesseesseseee oo soe o s 0s o

m Wahrscheinlichkeit in einem

Schliissel landet in

. diesem Fall hier
grossen Cluster zu landen ist S DA .
grésse r. und bildet ein viel
nachher /langeres Cluster

Quelle: Abb. 3.60, Algorithmen, Wayne & Sedgewick
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Clustering

Beobachtung
Laufzeit der Suche hangt von Linge der Cluster ab.

Theorem

In einer auf linearer Sondierung basierenden Hashtabelle mit einer
Liste der Grésse M und N = M Schliisseln ist die erforderliche
durchschnittliche Anzahl von Sondierungen fiir erfolgreiches
beziehungsweise erfolgloses Suchen

1 1 1 1
~Z (14— d ~=(1+———+
(tita) e =5 (i ap)
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Komplexitat
Worst-case Average-case

Implementation suchen einfiigen  Idschen  suchen (hit) einfiigen |8schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo,(N) N N log, (N) N/2 N

BST N N N log, () logo(N) VN
Rot-Schwarz Biume  logy(N)  logy(N)  logy(N)  logy(N) logy(N)  logy(N)
Hashtabellen N N N 0o(1) 0o(1) 0o(1)
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Diskussion

Wann sollen wir welche Art von Datenstruktur verwenden?

guarantee average case

ordered

key
ops? interface
insert delete

implementation

o || e

sequential search

el N N N “N N Y equalsO
('::::Z:‘_":‘_';) N N N 1N “N UN v compareToQ)
BsT N N N 129N 139N VN v compareTo()
red-black BST  21gN 21N 2lgN 10leN  10lgN  10IgN v compareTo()
separate chaining N N N 35% 35+ 35+ h::zljg)
linear probing N N N 35% 35% 35+ hi::zl:iz)

Abbildung: Sedgewick & Wayne, Tabelle 3.15
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