Algorithmen und Datenstrukturen
B8. Hashtabellen®

Marcel Liithi and Gabriele Roger

Universitat Basel

11. April 2019

1
Folien basieren auf Vorlesungsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/34Hashtables-2x2.pdf

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 1/37

https://algs4.cs.princeton.edu/lectures/34Hashtables-2x2.pdf

Algorithmen und Datenstrukturen
11. April 2019 — B8. Hashtabellen?

?Folien basieren auf Vorlesungsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/34Hashtables-2x2.pdf

B8.1 Einflihrung
B8.2 Hashfunktionen

B8.3 Hashtabellen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019

2 /37

https://algs4.cs.princeton.edu/lectures/34Hashtables-2x2.pdf

B8. Hashtabellen® Einfiihrung

B8.1 Einfiihrung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019 3 /37

B8. Hashtabellen®

Einfithrung
Symboltabellen: Ubersicht
Worst-case Average-case

Implementation suchen einfligen 18schen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo,(N) N N log, (N) N/2 N
BST N N N log, (N) logo(N) VN
Rot-Schwarz Bdume log,(N) logy(N) logy(N) logy(N) log,(N) logy(N)

Frage

Geht es noch besser?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 4 /37

B8. Hashtabellen* Einfiihrung

Hashtabellen: ldee

Elemente werden in Array gespeichert, wobei Position durch
Schliissel bestimmt ist.

Index

» Wichtigstes Werkzeug: Hashfunktion
> Berechnet Index aus Schlissel eshChate)=3)

* | “hallo” 3

Herausforderungen:
» Hashfunktion berechnen

» Kollisionen (2 unterschiedliche Schliissel .
haben gleichen Hashwert)

Index

“welt” 1
hash(“hallo”) = 3 ~_

2

' “hall” 3

hash(“welt”) = 1 4

8
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 5 /37

B8. Hashtabellen® Hashfunktionen

B8.2 Hashfunktionen

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019 6 /37

B8. Hashtabellen®

Hashfunktion: Ziele

» Konsistenz: Gleicher Schliissel sollte immer gleichen Hashwert
ergeben.
» Hashfunktion sollte effizient berechnet werden kdnnen.

» Schliissel sollten gleichverteilt sein.
> gleiche Wahrscheinlichkeit fiir jedes Feld

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019

7

Hashfunktionen

B8. Hashtabellen”

Quiz: Hashfunktion

Was sind mogliche Hashfunktionen fiir
> Integer (32 Bit Ganzzahl)
» Datum
> Strings
> Bilder
Wie aufwindig ist jeweils die Berechnung der Hashfunktion?

Hashfunktionen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 8 /37

B8. Hashtabellen® Hashfunktionen

Hashfunktionen in Java

Alle Java Klassen erben Methode hashCode
Anforderung:

» Falls x.equals(y) dann x.hashCode() == y.hashCode()
Gewiinscht:

> Falls 'x.equals(y) dann x.hashCode() ! = y.hashCode()

Wenn immer equals iiberschrieben wird, muss auch hashCode
tiberschrieben werden.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 9 /37

B8. Hashtabellen®

Beispiele von Hashfunktionen in Java

Integer:

public int hashCode() {
return this.value;

}

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Hashfunktionen

11. April 2019

10 / 37

B8. Hashtabellen®

Hashfunktionen

Beispiele von Hashfunktionen in Java

String:

public int hashCode() {

int h = 0;
if (value.length > 0) {
char vall] value;

for (int i = 0; i < value.length; i++) {
h =231 *%xh + valli]l;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 11

/37

B8. Hashtabellen'! Hashfunktionen

Beispiele von Hashfunktionen in Java

LinkedList:

public int hashCode() {
int hashCode = 1;
for (E e : this)
hashCode = 31 * hashCode + (e==null ? O : e.hashCode());
return hashCode;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 12 / 37

B8. Hashtabellen'? Hashfunktionen

Praktisches Rezept fiir benutzerdefinierte Typen

public int hashCode ()

{
int hash = 17;
hash = 31xhash + fieldl.hashCode();
hash = 31xhash + field2.hashCode();
hash = 31xhash + field3.hashCode();
return hash;

}

Funktioniert gut in Praxis - aber theoretisch nicht optimal.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 13 / 37

B8. Hashtabellen? Hashfunktionen

Praktische Tips

Gute Hashfunktionen zu entwerfen ist schwierig!

Einige Tips:
> Alle Bits im Schliissel sollten bei Berechnung gleich
mitberiicksichtigt werden.
> Verbessert Verteilung!
» Experimentell iiberpriifen (plot?)
» Hashing ist klassischer Performancebug. (Alles lduft korrekt
aber Programm ist langsam.)

» Hashfunktion auf Effizienz priifen.
» Was ist schneller, Vergleich oder Hash?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019

14

37

B8. Hashtabellen'* Hashfunktionen

Hashfuntionen in Python

» Hashfunktionen werden via die Methode __hash__ angegeben.

__hash__()

Called by built-in function hash() and for operations on members
of hashed collections including set, frozenset, and dict. __hash__()
should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to
mix together the hash values of the components of the object that
also play a part in comparison of objects by packing them into a
tuple and hashing the tuple.

Python Language Reference - Section 3: Data Model

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 15 / 37

B8. Hashtabellen'® Hashfunktionen

Modulares Hashing

Werte der Hashfunktion kdnnen negativ sein. Wir wollen aber
Werte zwischen 0 und M.

» Positiven Hash-wert nehmen und Modulo M rechnen.
In Java:

private int modularHash(Key x) {
return (x.hashCode() & Ox7fffffff) ¥ M;
}

In Python:

def modularHash(x):
return (hash(x) % ((sys.maxsize + 1) * 2) % M)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 16 / 37

B8. Hashtabellen® Hashfunktionen

Theoretische Analyse von Hashtabellen

Typische Annahme

Die von uns verwendeten Hashfunktionen verteilen die Schliissel
gleichmaBig und unabhingig voneinander auf die Integer-Werte
zwischen 0 und M — 1.

9000

[
[L e o [L JK
o 1 2 3 5 6 7 8 9 10 11 12

Balle werden zufillig in M verschiedene Gefésse verteilt.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 17 / 37

B8. Hashtabellen'’

Kollisionen

Wir kénnen Kollisionen nicht verhindern.

Beispiele relevanter mathematischer Resultate:
Geburtstagsparadox In einer Gruppe von 23 Kindern ist die
Wabhrscheinlichkeit 0.5, dass zwei am selben Tag
Geburtstag haben.
» Angewandt auf hashing: Anzahl Platze:
M = 365, Nach N = 23 Elementen bereits
grosse Chance, dass Kollision auftritt.
> Allgemein: Wir erwarten Kollision nach ungefdhr

/7™M /2 Elementen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 18

Hashfunktionen

37

B8. Hashtabellen'® Hashfunktionen

Kollisionen

Wir kénnen Kollisionen nicht verhindern.

Beispiele relevanter mathematischer Resultate:
Sammelbilderproblem Gegeben M Sammelbilder, wieviele Bilder
muss man ziehen (mit zuriicklegen), bevor man jedes
einmal gezogen hat?
» Angewandt auf hashing: Wie lange dauert es bis
alle Felder besetzt sind?
» Der Erwartungswert wachst mit ©(M log(M))
Um M = 50 unterschiedliche Sammelbilder zu haben
bendtigen wir ungefahr 50 log(50) ~ 200 Bilder

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019

19 / 37

B8. Hashtabellen®

Hashfunktionen

Experimente

ZJupyter untitied wemen

File Edt View Inset Cell Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

n [7]: | plot (linspace(0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

IPython Notebooks: Hashtables.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 20 / 37

B8. Hashtabellen®’ Hashtabellen

B8.3 Hashtabellen

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019 21 /37

B8. Hashtabellen®!

Hashtabelle: 2 Implementationen

Grundlage ist immer ein Array der Grosse M um N Eintrdge zu
speichern.
Wichtigste Frage: Wie behandle ich Kollisionen?
2 Strategien
> Verkettung (separate chaining)
» Jedes Element enthélt Verkettete Liste mit allen Schliissel /
Werte Paaren
> M kann kleiner sein als N
» Lineare Sondierung (linear probing)
> M wird grosser gewdhlt als .
» Suche nach nichstem freien Platz.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019

22

Hashtabellen

B8. Hashtabellen®?

Verkettung

Hashtabellen

Hash: Schliissel wird auf Zahl zwischen 0 und M — 1
gemappt.

Einfligen: Falls nicht gefunden, am Anfang in Liste enfiigen
Suche: Relevante Liste durchsuchen

Index

0

L0 mEam
B o

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019 23 /37

2
B8. Hashtabellen®? Hashtabellen

Komplexitat

Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Wahrscheinlichkeit (unter der
Gleichverteilungsannahme), dass die Anzahl der Schliissel in einer
Liste bis auf einen kleinen konstanten Faktor bei N/M liegt,
extrem nahe an 1.

Theorem

In einer auf Verkettung basierenden Hashtabelle mit M Listen und
N Schliisseln ist die Anzahl der Vergleiche (Gleichheitstests) fiir
Einfiigungen und erfolglose Suchen ~ N /M.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 24 /37

B8. Hashtabellen®* Hashtabellen

Verkettung: Elemente Loschen

» Einfache Operation: Element aus relevanter Liste I3schen.

index g " /// am
[¥

-

-

0

0
L e
R b O3

mEEm -
: m @m
=t

B SR Cliy R b -

> W

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019 25 /37

B8. Hashtabellen®

Verkettung: Grossenanpassung

» Ziel: Linge N/M bleibt etwa konstant
» Alle Elemente miissen neu gehashed werden.

AlO Bi1 Ef4

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019

Hashtabellen

26 / 37

B8. Hashtabellen®®

Hashtabellen

Implementation und Beispielanwendung

ZJupyter untitied s

File Edt View Inset Cell

)

Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente
n (31: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

Tn [7]: | plot (linspace (0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

IPython Notebooks: Hashtables.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 27 / 37

B8. Hashtabellen®’ Hashtabellen

Informatiker des Tages : Arthur Lee Samuel

» Professor in Stanford

» Mitentwickler von TEX
» Pionier in Kiinstlicher Intelligenz /
Maschinellem lernen
» Entwickelte erstes erfolgreiches
Dame-Programm.
» Erste Implementation der linearen
Sondierungsstrategie in
Hashtabellen (1953)

Arthur Lee Samuel

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 28 / 37

B8. Hashtabellen®® Hashtabellen

Lineares sondieren

Voraussetzung: M > N
Hash: Schliissel wird auf Zahl i zwischen 0 und M — 1
gemappt.
Einfiigen: An Position i einfiigen.
» Falls belegt, probiere Position i + 1, i 4+ 2, ...
Suche: Suche an Index i
> Falls nicht leer, aber Eintrag ! = gesuchter
Schliissel, suche an Position i + 1,7 + 2, etc.

Insert S
hash(S)=2

Insert E
hash(E)=0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
¥

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 29

37

B8. Hashtabellen®® Hashtabellen

Lineare Sondierung: Elemente Loschen

» Wenn erstes Element in Cluster geléscht wird, miissen
Nachfolger geloscht werden.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Was ist wenn hash(1)=7?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
schltisel

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019 30 /37

B8. Hashtabellen®? Hashtabellen

Lineare Sondierung: Grossenanpassung

» Ziel: Linge N/M < 1/2

> Alle Elemente miissen neu gehashed werden.
(] 1 2 3 4 5 6
et [IS S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Schltisel

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019 31 /37

B8. Hashtabellen>!

Hashtabellen

Implementation und Beispielanwendung

ZJupyter untitied s

File Edt View Inset Cell

)

Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente
n (31: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

Tn [7]: | plot (linspace (0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

IPython Notebooks: Hashtables.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 32 /37

B8. Hashtabellen®* Hashtabellen

Clustering

Beobachtung
Lineares Sondieren fiihrt zu Clusterbildung.

» Bei Kollision wachst ein Cluster, da das Element am Ende
eingefiigt wird.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 11. April 2019 33 /37

B8. Hashtabellen>? Hashtabellen

Clustering

Beobachtung
Lange Cluster wachsen schneller als kurze.

9/64-Chance, dass der neue
Schliissel dieses Cluster vergrifert

- L.) vort‘er-o [Sosssssse] sosessseosses oo sos o o0 o
» Wahrscheinlichkeit in einem

grossen Cluster zu landen ist

Schliissel landet in

/diesem Fall hier

[TS— odesassssssess oo sae o o 00 .
grésse r. und bildet ein viel
nachher /lﬁngeres Cluster

Quelle: Abb. 3.60, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 34 /37

B8. Hashtabellen>* Hashtabellen

Clustering

Beobachtung
Laufzeit der Suche hiangt von Lange der Cluster ab.

Theorem

In einer auf linearer Sondierung basierenden Hashtabelle mit einer
Liste der Grésse M und N = aM Schliisseln ist die erforderliche
durchschnittliche Anzahl von Sondierungen fiir erfolgreiches
beziehungsweise erfolgloses Suchen

1 1 1 1
~ > (1 d ~> (14—
2 (1rr7a) 0 (i aap)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 35 /37

B8. Hashtabellen>®

Komplexitat

Hashtabellen

Worst-case Average-case

Implementation suchen einfligen 18schen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo,(N) N N log, (N) N/2 N

BST N N N log, (N) logo(N) VN
Rot-Schwarz Bdume log,(N) logy(N) logy(N) logy(N) log,(N) logy(N)
Hashtabellen N N N o(1) o(1) 0o(1)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 36 / 37

B8. Hashtabellen>® Hashtabellen

Diskussion

Wann sollen wir welche Art von Datenstruktur verwenden?

quarantee average case
ordered key
implementation e ey
search delete | searc insert | delete
sequential search
(unordered list) 2 2 2 Ly o L IR
binary search .
orderdamay &N N N 1N UN BN v comareTo0
BsT N N N 139N 139N VN v comareToO
red-black BT 21gN 21gN 21gN 10lgN 10lgN 10lgN v compareToQ)
Xl
separate chaining N N N 35+ 35+ 35+ RSN
1
linear probing N N N 35% 35 35+ hi‘iﬁiniﬂ)

Abbildung: Sedgewick & Wayne, Tabelle 3.15

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 11. April 2019 37 /37

	Einführung
	

	Hashfunktionen
	

	Hashtabellen
	

