Algorithmen und Datenstrukturen
1

B7. Balancierte Baume

Marcel Liithi and Gabriele Roger
Universitat Basel

10. April 2019

1. . . .
Folien basieren auf Vorlesungsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/33BalancedSearchTrees—2x2.pdf

https://algs4.cs.princeton.edu/lectures/33BalancedSearchTrees-2x2.pdf

Einfiihrung

Einfiihrung 3B
o] Yo} 00

Informatiker des Tages : Donald Knuth

m Autor: "The art of computer
programming”
m Autor des Textsatzsystems TEX
m Gewinner Turing Award (1974) und
vieler anderer Preise

m Arbeit an Analyse von
Algorithmen

m Entwickelte erste Sprache fiir
"Literate programming”

Donald E. Knuth

Knuth D. The art of computer programming 1: Fundamental
algorithms 2: Seminumerical algorithms 3: Sorting and searching.
MA: Addison-Wesley. 1968.

Einfiihrung

ooe

Balancierte Baume

Worst-case Average-case
Implementation suchen einfiigen Idschen suchen (hit) einfiigen 8schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo(N) N N log, (N) N/2 N
BST N N N log, (N) log,(N) VN
Ziel logy(N) loga(N) logy(N) logy(N) logy(N) log,(N)

Kénnen wir eine Implementation finden, bei der alle Operationen logarithmische
Komplexitdt haben?

2-3 Biume
©00000000

2-3 Baume

Einfiihrung 2-3 Biume
0@0000000

2-3 Baume

Wir unterscheiden zwei Knotentypen
2-Knoten 1 Schliissel, zwei Kinder
3-Knoten 2 Schliissel, drei Kinder

m Wir verlangen symmetrische Ordnung
m Zusitzlich muss Baum perfekt balanciert sein.
m Jeder Pfad von Wurzel zu Blatt hat dieselbe Lange.

zwischen E und J

Einfiihrung 2-3 Biume
[e]e]e} [e]e] lelele]ele]e)

Einfligen in 2-3 Baum

Einfiigen in 2-Knoten auf letzter Ebene

m Neuer Schliissel zu 2-Knoten hinzufiigen. Knoten wird zu
3-Knoten.

G Einfiigen

ko W @ G0 a0 @) G0

Einfiihrung 2-3 Biume

[e]e]e] loJele]e]e]

Einfligen in 2-3 Baum

Einfiigen in 3-Knoten auf letzter Ebene
m Neuer Schliissel zu 3-Knoten hinzufiigen. Knoten wird
temporar zu 4-Knoten.
m Mittlerer Knoten in Parent einfiigen.
m Falls nétig, rekursiv fortsetzen.
m Falls Wurzel erreicht wird, und diese zu 4-Knoten wird, wird
diese zu zwei 2-Knoten.

Z Einfiigen

Einfiihrung 2-3 Biume
000 [e]e]e]e] lelelele)

Lokale Transformationen

m Teilen eines 4 Knotens ist lokale Operation
m Unterbdume nicht davon betroffen
m Konstante Anzahl Operationen

(a e

kleiner \ jzwischem, /zwischem\ /zwischen, /zwischen grofler
als a aundb b und c cundd dunde alse
LU T e N I S U i T U e arari B) e

(b) ()

kleiner \ jzwischem, /zwischem\ /zwischen, /zwischen grifler
als a aundb b und c cundd)| dunde alse
m---viir---vir---vir---yn---\vir-..\

Quelle: Abb. 3.30, Algorithmen, Wayne & Sedgewick

Einfiihrung 2-3 Biume

[e]e]e]e]e] lele]e]

Globale Eigenschaften

m Invariante: Jede Operation beldsst Baum perfekt balanciert.

m Ordnung der Teilbdume bleibt erhalten.

Wurzel Elternknoten ist ein 3-Kind-Knoten

— A links
ofRo) de . (b d e)
@
Elternknoten ist ein 2-Kind-Knoten
ace

|

o

)
Q)

links @ _, o M G
c () (d)
c d

rechts @) rechts_(GB) . G
ORO 0

Quelle: Abb. 3.31, Algorithmen, Wayne & Sedgewick

O]

2-3 Biume
000000000

2-3 Baum: Quiz: Performance

m B3ume sind perfekt balanciert!

Baumhohe:
Worst Case
Best Case

Einfiihrung

Ubersicht

2-3 Baume

000000080

Worst-case Average-case
Implementation suchen einfiigen ldschen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo(N) N N log, () N/2 N
Bindrer Suchbaum N N N log,(N) log,(N) VN
2-3 Baum logy(N) logy(N) logy(N) log,(N) logy(N) logy(NV)

Einfiihrung 2-3 Biume

00000000e

Problem

2-3 Baume sind miithsam zu implementieren. J

m Wir miissen viele Spezialfélle unterscheiden.

m Code wird unelegant und fehleranfillig.

m Elegante Losung: Rot-Schwarz Biume

Rot-Schwarz Baume

©00000000000

Rot-Schwarz Baume

Einfiihrung 2 iume Rot-Schwarz Baume
0C 0®0000000000

Informatiker des Tages : Robert Sedgewick

m Professor in Princeton
m Doktorand von Donald Knuth.
m "Erfinder” der Rot-Schwarz Baume

m Autor von unserem Lehrbuch.

Robert Sedgewick

Guibas, Leo J., and Robert Sedgewick. " A dichromatic framework
for balanced trees”, IEEE Foundations of Computer Science, 1978. J

Einfiihrung 3 Rot-Schwarz Baume

0O0e000000000

Rot-Schwarz Baume: ldee

m 2-3 Baum wird als bindrer Suchbaum reprasentiert

m 3-Knoten werden mit speziellen "roten” links markiert.

Grosster Knoten

/ wird zur Wurzel

3—Kind—Kno @
()

kleiner™ /zwischen / grofler grofer
als a aundb alsb als b
. 11

kleiner zwischen |
als a aundb

[N B U |

Quelle: Abb. 3.34, Algorithmen, Wayne & Sedgewick

Einfiihrung 2-3 Rot-Schwarz Baume

0O0e000000000

Rot-Schwarz Baume: ldee

m 2-3 Baum wird als bindrer Suchbaum reprasentiert

m 3-Knoten werden mit speziellen "roten” links markiert.

Rot-Schwarz-Baum

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick

Einfiihrung 2-3B Rot-Schwarz Baume

0O0e000000000

Rot-Schwarz Baume: ldee

m 2-3 Baum wird als bindrer Suchbaum reprasentiert

m 3-Knoten werden mit speziellen "roten” links markiert.

2-3-Baum horizontale rote Referenzen

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick

Rot-Schwarz Baume

Einfiihrung ne
[e]e]e} 000 O00@00000000

Rot-Schwarz Baume - Definition

Ein Rot-Schwarz Baum ist ein bindrer Suchbaum, mit der
Eigenschaft:

m Rote Referenzen zeigen nach links
m Von keinem Knoten gehen zwei rote Referenzen aus

m Jeder Pfad von der Wurzel zu einem Blatt hat die gleiche
Anzahl von schwarzen Referenzen.

Rot-Schwarz Baume

Einfiihrung
[e]e]e} O00@00000000

Rot-Schwarz Baume - Definition

Ein Rot-Schwarz Baum ist ein bindrer Suchbaum, mit der
Eigenschaft:
m Rote Referenzen zeigen nach links
m Von keinem Knoten gehen zwei rote Referenzen aus
m (Keine 4-Knoten im 2-3 Baum)
m Jeder Pfad von der Wurzel zu einem Blatt hat die gleiche
Anzahl von schwarzen Referenzen.
m (Gleiche Tiefe im 2-3 Baum)

Rot-Schwarz Baume
0000@0000000

Einfiihrung

Reprasentation in Code

m Jeder Knoten hat genau eine Referenz von Parent
m 1 Feld in Knoten geniigt um Farbe speichern

class Node[Key, Value]:
Node (key : Key, value : Value)

key : Key

value : Value

left : Node[Key, Value]
right : Node[Key, Valuel
color : Color # Red or Black

color=Red
\

color=Black

Einfiihrung

Suchen und ordnungsbasierte Operationen

m RB-Tree ist ein bindrer Suchbaum - einfach mit Farbe

m Implementation von Suche und ordnungsbasierten
Operationen bleibt gleich.

m Farbe wird ignoriert.

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick

Rot-Schwarz Baume

0O0000e000000

Einfiihrung

Einfligen: Idee

Grundidee

Alle Operationen werden auf Operationen in entsprechendem 2-3

Baum zuriickgefiihrt

m Neuer Link wird immer Rot
m Fiihrt zu potentiellem 4 Knoten
in 2-3 Baum
m Lokale Operationen um 2-3 Baum
wiederherzustellen
m Farb wechseln
m Rotation links
m Rotation rechts

H einfugen

®
GO
n /*
Cy
R
A
f
B
R,
" af)y
®
CElNG
QNSO
®
&
@)
o

Rot-Schwarz Baume

Einfiihrung 3 B e Rot-Schwarz Baume

0O000000e0000

Einfligen: Details

m Unterscheidung aller moglichen Fille

m Pro Fall: Eigene Strategie um 2-3 Baum wiederherzustellen

Am besten in Ruhe selber lesen / anschauen
m Relevante Teile aus dem Buch auf Adam
m Gute, schrittweise Erklarung mit Ablaufprotokoll
m Details nicht priifungsrelevant

Animation:
https://algs4.cs.princeton.edu/lectures/
33DemoRedBlackBST.mov

https://algs4.cs.princeton.edu/lectures/33DemoRedBlackBST.mov
https://algs4.cs.princeton.edu/lectures/33DemoRedBlackBST.mov

Einfligen: Implementation

Rot-Schwarz Baume

O0000000e000

m Triigerisch einfache Implementation

def _put(self, key, value, node):

if (node == None):

return RedBlackBST.Node(key, value, Color.RED, 1)
elif key < node.key:

node.left = self._put(key, value, node.left)
elif key > node.key:

node.right = self._put(key, value, node.right)
elif key == node.key:

node.value = value

if self._isRed(node.right) and not self._isRed(node.left):
node = self._rotateleft(node)

if self._isRed(node.left) and self._isRed(node.left.left):
node = self._rotateRight (node)

if self._isRed(node.left) and self._isRed(node.right):
self._flipColors (node)

node.count = 1 + self._size(node.left) + self._size(node.right)

return node

Rot-Schwarz Baume
000000000800

Implementation

Zjupyter untitied ausa
Fle Edt Vew et Col Kemel Help

| Python [Roof] O
B+ x @A B 4 ¢ N EC coe

Y @ Celfoobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline
Populating Lhe inleraclive namespace Lrom aunpy and malplollib

In 171 plot(linspace(0, 1000), (lins)

ce (0,1000) **2))
Out[7]: [<matplotlib.linas.Tine2D at 0x29d8ba027a8>]

1000000

800000

00000

00000

200000

20 0 EQ EQ 000

Jupyter-Notebook: RedBlackBST. ipynb

Einfiihrung 2 Rot-Schwarz Baume
000000000080

Analyse

Die Héhe eines Rot-Schwarz-Baums mit N Knoten ist nicht hbher
als 2logy(N) .

Intuition:

m Jeder Pfad von Wurzel zu Blatt hat gleiche Anzahl von
Schwarzen Referenzen

m Korrespondenz mit 2-3 Baum

m Es gibt nie zwei rote Referenzen hintereinander.

Einfiihrung

Ubersicht

Rot-Schwarz Baume

00000000000 e

Worst-case Average-case
Implementation suchen einfligen 16schen suchen (hit) einfiigen I&schen
Verkettete Liste N N N N/2 N N/2
Bindre suche log,(N) N N log, () N/2 N
Bindrer Suchbaum N N N log,(N) log,(N) VN
Rot-Schwarz Baum logy(N) logy(N) logy(N) logy(N) log,(N) logy(N)

Wir haben logarithmische Komplexitat aller Operationen mit einer kleinen Konstante. J

	Einführung
	

	2-3 Bäume
	

	Rot-Schwarz Bäume
	

