
Algorithmen und Datenstrukturen
B7. Balancierte Bäume1

Marcel Lüthi and Gabriele Röger

Universität Basel

10. April 2019

1
Folien basieren auf Vorlesungsfolien von Sedgewick & Wayne

https://algs4.cs.princeton.edu/lectures/33BalancedSearchTrees-2x2.pdf

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 1 / 26

https://algs4.cs.princeton.edu/lectures/33BalancedSearchTrees-2x2.pdf


Algorithmen und Datenstrukturen
10. April 2019 — B7. Balancierte Bäumea

a
Folien basieren auf Vorlesungsfolien von Sedgewick & Wayne

https://algs4.cs.princeton.edu/lectures/33BalancedSearchTrees-2x2.pdf

B7.1 Einführung

B7.2 2-3 Bäume

B7.3 Rot-Schwarz Bäume

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 2 / 26

https://algs4.cs.princeton.edu/lectures/33BalancedSearchTrees-2x2.pdf


B7. Balancierte Bäume2 Einführung

B7.1 Einführung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 3 / 26



B7. Balancierte Bäume3 Einführung

Informatiker des Tages : Donald Knuth

Donald E. Knuth

I Autor: ”The art of computer
programming”
I Autor des Textsatzsystems TEX

I Gewinner Turing Award (1974) und
vieler anderer Preise
I Arbeit an Analyse von

Algorithmen

I Entwickelte erste Sprache für
”Literate programming”

Knuth D. The art of computer programming 1: Fundamental
algorithms 2: Seminumerical algorithms 3: Sorting and searching.
MA: Addison-Wesley. 1968.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 4 / 26



B7. Balancierte Bäume4 Einführung

Balancierte Bäume

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

BST N N N log2(N) log2(N)
√
N

Ziel log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)

Frage

Können wir eine Implementation finden, bei der alle Operationen logarithmische
Komplexität haben?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 5 / 26



B7. Balancierte Bäume5 2-3 Bäume

B7.2 2-3 Bäume

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 6 / 26



B7. Balancierte Bäume6 2-3 Bäume

2-3 Bäume

Wir unterscheiden zwei Knotentypen

2-Knoten 1 Schlüssel, zwei Kinder

3-Knoten 2 Schlüssel, drei Kinder

I Wir verlangen symmetrische Ordnung
I Zusätzlich muss Baum perfekt balanciert sein.

I Jeder Pfad von Wurzel zu Blatt hat dieselbe Länge.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 7 / 26



B7. Balancierte Bäume7 2-3 Bäume

Einfügen in 2-3 Baum

Einfügen in 2-Knoten auf letzter Ebene

I Neuer Schlüssel zu 2-Knoten hinzufügen. Knoten wird zu
3-Knoten.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 8 / 26



B7. Balancierte Bäume8 2-3 Bäume

Einfügen in 2-3 Baum

Einfügen in 3-Knoten auf letzter Ebene
I Neuer Schlüssel zu 3-Knoten hinzufügen. Knoten wird

temporär zu 4-Knoten.
I Mittlerer Knoten in Parent einfügen.
I Falls nötig, rekursiv fortsetzen.
I Falls Wurzel erreicht wird, und diese zu 4-Knoten wird, wird

diese zu zwei 2-Knoten.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 9 / 26



B7. Balancierte Bäume9 2-3 Bäume

Lokale Transformationen

I Teilen eines 4 Knotens ist lokale Operation
I Unterbäume nicht davon betroffen
I Konstante Anzahl Operationen

Quelle: Abb. 3.30, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 10 / 26



B7. Balancierte Bäume10 2-3 Bäume

Globale Eigenschaften

I Invariante: Jede Operation belässt Baum perfekt balanciert.

I Ordnung der Teilbäume bleibt erhalten.

Quelle: Abb. 3.31, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 11 / 26



B7. Balancierte Bäume11 2-3 Bäume

2-3 Baum: Quiz: Performance

I Bäume sind perfekt balanciert!

Baumhöhe:

Worst Case

Best Case

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 12 / 26



B7. Balancierte Bäume12 2-3 Bäume

Übersicht

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

Binärer Suchbaum N N N log2(N) log2(N)
√
N

2-3 Baum log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 13 / 26



B7. Balancierte Bäume13 2-3 Bäume

Problem

2-3 Bäume sind mühsam zu implementieren.

I Wir müssen viele Spezialfälle unterscheiden.

I Code wird unelegant und fehleranfällig.

I Elegante Lösung: Rot-Schwarz Bäume

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 14 / 26



B7. Balancierte Bäume14 Rot-Schwarz Bäume

B7.3 Rot-Schwarz Bäume

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 15 / 26



B7. Balancierte Bäume15 Rot-Schwarz Bäume

Informatiker des Tages : Robert Sedgewick

Robert Sedgewick

I Professor in Princeton

I Doktorand von Donald Knuth.

I ”Erfinder” der Rot-Schwarz Bäume

I Autor von unserem Lehrbuch.

Guibas, Leo J., and Robert Sedgewick. ”A dichromatic framework
for balanced trees”, IEEE Foundations of Computer Science, 1978.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 16 / 26



B7. Balancierte Bäume16 Rot-Schwarz Bäume

Rot-Schwarz Bäume: Idee

I 2-3 Baum wird als binärer Suchbaum repräsentiert
I 3-Knoten werden mit speziellen ”roten” links markiert.

Quelle: Abb. 3.34, Algorithmen, Wayne & Sedgewick

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 17 / 26



B7. Balancierte Bäume17 Rot-Schwarz Bäume

Rot-Schwarz Bäume - Definition

Ein Rot-Schwarz Baum ist ein binärer Suchbaum, mit der
Eigenschaft:
I Rote Referenzen zeigen nach links
I Von keinem Knoten gehen zwei rote Referenzen aus

I (Keine 4-Knoten im 2-3 Baum)
I Jeder Pfad von der Wurzel zu einem Blatt hat die gleiche

Anzahl von schwarzen Referenzen.
I (Gleiche Tiefe im 2-3 Baum)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 18 / 26



B7. Balancierte Bäume18 Rot-Schwarz Bäume

Repräsentation in Code

I Jeder Knoten hat genau eine Referenz von Parent
I 1 Feld in Knoten genügt um Farbe speichern

class Node[Key , Value]:

Node(key : Key , value : Value)

key : Key

value : Value

left : Node[Key , Value]

right : Node[Key , Value]

color : Color # Red or Black

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 19 / 26



B7. Balancierte Bäume19 Rot-Schwarz Bäume

Suchen und ordnungsbasierte Operationen

I RB-Tree ist ein binärer Suchbaum - einfach mit Farbe
I Implementation von Suche und ordnungsbasierten

Operationen bleibt gleich.
I Farbe wird ignoriert.

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 20 / 26



B7. Balancierte Bäume20 Rot-Schwarz Bäume

Einfügen: Idee

Grundidee
Alle Operationen werden auf Operationen in entsprechendem 2-3
Baum zurückgeführt

I Neuer Link wird immer Rot
I Führt zu potentiellem 4 Knoten

in 2-3 Baum

I Lokale Operationen um 2-3 Baum
wiederherzustellen
I Farb wechseln
I Rotation links
I Rotation rechts

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 21 / 26



B7. Balancierte Bäume21 Rot-Schwarz Bäume

Einfügen: Details

I Unterscheidung aller möglichen Fälle

I Pro Fall: Eigene Strategie um 2-3 Baum wiederherzustellen

Am besten in Ruhe selber lesen / anschauen
I Relevante Teile aus dem Buch auf Adam

I Gute, schrittweise Erklärung mit Ablaufprotokoll

I Details nicht prüfungsrelevant

Animation:
https://algs4.cs.princeton.edu/lectures/

33DemoRedBlackBST.mov

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 22 / 26

https://algs4.cs.princeton.edu/lectures/33DemoRedBlackBST.mov
https://algs4.cs.princeton.edu/lectures/33DemoRedBlackBST.mov


B7. Balancierte Bäume22 Rot-Schwarz Bäume

Einfügen: Implementation

I Trügerisch einfache Implementation

def _put(self , key , value , node):

if (node == None):

return RedBlackBST.Node(key , value , Color.RED , 1)

elif key < node.key:

node.left = self._put(key , value , node.left)

elif key > node.key:

node.right = self._put(key , value , node.right)

elif key == node.key:

node.value = value

if self._isRed(node.right) and not self._isRed(node.left):

node = self._rotateLeft(node)

if self._isRed(node.left) and self._isRed(node.left.left):

node = self._rotateRight(node)

if self._isRed(node.left) and self._isRed(node.right):

self._flipColors(node)

node.count = 1 + self._size(node.left) + self._size(node.right)

return node

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 23 / 26



B7. Balancierte Bäume23 Rot-Schwarz Bäume

Implementation

Jupyter-Notebook: RedBlackBST.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 24 / 26



B7. Balancierte Bäume24 Rot-Schwarz Bäume

Analyse

Theorem
Die Höhe eines Rot-Schwarz-Baums mit N Knoten ist nicht höher
als 2 log2(N) .

Intuition:
I Jeder Pfad von Wurzel zu Blatt hat gleiche Anzahl von

Schwarzen Referenzen
I Korrespondenz mit 2-3 Baum

I Es gibt nie zwei rote Referenzen hintereinander.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 25 / 26



B7. Balancierte Bäume25 Rot-Schwarz Bäume

Übersicht

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

Binärer Suchbaum N N N log2(N) log2(N)
√
N

Rot-Schwarz Baum log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)

Wir haben logarithmische Komplexität aller Operationen mit einer kleinen Konstante.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 26 / 26


	Einführung
	

	2-3 Bäume
	

	Rot-Schwarz Bäume
	


