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B7.1 Einführung
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Informatiker des Tages : Donald Knuth

Donald E. Knuth

I Autor: ”The art of computer
programming”
I Autor des Textsatzsystems TEX

I Gewinner Turing Award (1974) und
vieler anderer Preise
I Arbeit an Analyse von

Algorithmen

I Entwickelte erste Sprache für
”Literate programming”

Knuth D. The art of computer programming 1: Fundamental
algorithms 2: Seminumerical algorithms 3: Sorting and searching.
MA: Addison-Wesley. 1968.
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Balancierte Bäume

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

BST N N N log2(N) log2(N)
√
N

Ziel log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)

Frage

Können wir eine Implementation finden, bei der alle Operationen logarithmische
Komplexität haben?
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B7.2 2-3 Bäume
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2-3 Bäume

Wir unterscheiden zwei Knotentypen

2-Knoten 1 Schlüssel, zwei Kinder

3-Knoten 2 Schlüssel, drei Kinder

I Wir verlangen symmetrische Ordnung
I Zusätzlich muss Baum perfekt balanciert sein.

I Jeder Pfad von Wurzel zu Blatt hat dieselbe Länge.
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Einfügen in 2-3 Baum

Einfügen in 2-Knoten auf letzter Ebene

I Neuer Schlüssel zu 2-Knoten hinzufügen. Knoten wird zu
3-Knoten.
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Einfügen in 2-3 Baum

Einfügen in 3-Knoten auf letzter Ebene
I Neuer Schlüssel zu 3-Knoten hinzufügen. Knoten wird

temporär zu 4-Knoten.
I Mittlerer Knoten in Parent einfügen.
I Falls nötig, rekursiv fortsetzen.
I Falls Wurzel erreicht wird, und diese zu 4-Knoten wird, wird

diese zu zwei 2-Knoten.
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Lokale Transformationen

I Teilen eines 4 Knotens ist lokale Operation
I Unterbäume nicht davon betroffen
I Konstante Anzahl Operationen

Quelle: Abb. 3.30, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 10 / 26



B7. Balancierte Bäume10 2-3 Bäume

Globale Eigenschaften

I Invariante: Jede Operation belässt Baum perfekt balanciert.

I Ordnung der Teilbäume bleibt erhalten.

Quelle: Abb. 3.31, Algorithmen, Wayne & Sedgewick
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2-3 Baum: Quiz: Performance

I Bäume sind perfekt balanciert!

Baumhöhe:

Worst Case

Best Case

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 10. April 2019 12 / 26



B7. Balancierte Bäume12 2-3 Bäume

Übersicht

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

Binärer Suchbaum N N N log2(N) log2(N)
√
N

2-3 Baum log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)
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Problem

2-3 Bäume sind mühsam zu implementieren.

I Wir müssen viele Spezialfälle unterscheiden.

I Code wird unelegant und fehleranfällig.

I Elegante Lösung: Rot-Schwarz Bäume
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B7.3 Rot-Schwarz Bäume
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Informatiker des Tages : Robert Sedgewick

Robert Sedgewick

I Professor in Princeton

I Doktorand von Donald Knuth.

I ”Erfinder” der Rot-Schwarz Bäume

I Autor von unserem Lehrbuch.

Guibas, Leo J., and Robert Sedgewick. ”A dichromatic framework
for balanced trees”, IEEE Foundations of Computer Science, 1978.
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Rot-Schwarz Bäume: Idee

I 2-3 Baum wird als binärer Suchbaum repräsentiert
I 3-Knoten werden mit speziellen ”roten” links markiert.

Quelle: Abb. 3.34, Algorithmen, Wayne & Sedgewick

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick
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Rot-Schwarz Bäume - Definition

Ein Rot-Schwarz Baum ist ein binärer Suchbaum, mit der
Eigenschaft:
I Rote Referenzen zeigen nach links
I Von keinem Knoten gehen zwei rote Referenzen aus

I (Keine 4-Knoten im 2-3 Baum)
I Jeder Pfad von der Wurzel zu einem Blatt hat die gleiche

Anzahl von schwarzen Referenzen.
I (Gleiche Tiefe im 2-3 Baum)
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Repräsentation in Code

I Jeder Knoten hat genau eine Referenz von Parent
I 1 Feld in Knoten genügt um Farbe speichern

class Node[Key , Value]:

Node(key : Key , value : Value)

key : Key

value : Value

left : Node[Key , Value]

right : Node[Key , Value]

color : Color # Red or Black
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Suchen und ordnungsbasierte Operationen

I RB-Tree ist ein binärer Suchbaum - einfach mit Farbe
I Implementation von Suche und ordnungsbasierten

Operationen bleibt gleich.
I Farbe wird ignoriert.

Quelle: Abb. 3.36, Algorithmen, Wayne & Sedgewick
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Einfügen: Idee

Grundidee
Alle Operationen werden auf Operationen in entsprechendem 2-3
Baum zurückgeführt

I Neuer Link wird immer Rot
I Führt zu potentiellem 4 Knoten

in 2-3 Baum

I Lokale Operationen um 2-3 Baum
wiederherzustellen
I Farb wechseln
I Rotation links
I Rotation rechts
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Einfügen: Details

I Unterscheidung aller möglichen Fälle

I Pro Fall: Eigene Strategie um 2-3 Baum wiederherzustellen

Am besten in Ruhe selber lesen / anschauen
I Relevante Teile aus dem Buch auf Adam

I Gute, schrittweise Erklärung mit Ablaufprotokoll

I Details nicht prüfungsrelevant

Animation:
https://algs4.cs.princeton.edu/lectures/

33DemoRedBlackBST.mov
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Einfügen: Implementation

I Trügerisch einfache Implementation

def _put(self , key , value , node):

if (node == None):

return RedBlackBST.Node(key , value , Color.RED , 1)

elif key < node.key:

node.left = self._put(key , value , node.left)

elif key > node.key:

node.right = self._put(key , value , node.right)

elif key == node.key:

node.value = value

if self._isRed(node.right) and not self._isRed(node.left):

node = self._rotateLeft(node)

if self._isRed(node.left) and self._isRed(node.left.left):

node = self._rotateRight(node)

if self._isRed(node.left) and self._isRed(node.right):

self._flipColors(node)

node.count = 1 + self._size(node.left) + self._size(node.right)

return node
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Implementation

Jupyter-Notebook: RedBlackBST.ipynb
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Analyse

Theorem
Die Höhe eines Rot-Schwarz-Baums mit N Knoten ist nicht höher
als 2 log2(N) .

Intuition:
I Jeder Pfad von Wurzel zu Blatt hat gleiche Anzahl von

Schwarzen Referenzen
I Korrespondenz mit 2-3 Baum

I Es gibt nie zwei rote Referenzen hintereinander.
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Übersicht

Worst-case Average-case
Implementation suchen einfügen löschen suchen (hit) einfügen löschen
Verkettete Liste N N N N/2 N N/2
Binäre suche log2(N) N N log2(N) N/2 N

Binärer Suchbaum N N N log2(N) log2(N)
√
N

Rot-Schwarz Baum log2(N) log2(N) log2(N) log2(N) log2(N) log2(N)

Wir haben logarithmische Komplexität aller Operationen mit einer kleinen Konstante.
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