Algorithmen und Datenstrukturen
B6. Symboltabellen®

Marcel Lithi and Gabriele Roger

Universitat Basel

03. April 2019

1. . _ . .
Folien basieren Teilweise auf Vorlesungsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/31ElementarySymbolTables-2x2.pdf

https://algs4.cs.princeton.edu/lectures/31ElementarySymbolTables-2x2.pdf

Einfiihrung

Einfiihrung S e lementationen

oeo

Ubersicht

—{ Sortieren

Komplexitats-
analyse

| Fundamentale
Datenstrukturen

‘ A&D }——{ Suchen ‘
—{ Graphen ‘
—{ Strings ‘

| | Weiterfiihrende
Themen

Einfiihrung Symboltab
ooe

Ubersicht iiber nachsten Vorlesungen

Thema: Symboltabellen

Einfiihrung und einfache Implementationen (Diese Woche)
Bindre Suchbdume (Diese Woche)

2-3-Bdume und Rot-Schwarz Biume (N&chste Woche)
Hashtabellen (Nachste Woche)

Symboltabellen
©000000000

Symboltabellen

Einfiihrung Symboltabellen lementationen
[e]e]e} 0O@00000000 S

Symboltabellen

Abstraktion fiir Schliissel /Werte Paar J

Grundlegende Operationen
m Speichere Schliissel mit dazugehdrendem Wert.
m Suche zu Schliissel gehérenden Wert.

m Schliissel und Wert ldschen.

Einfiihrung Symboltabellen

000000000 000000000

Beispiel: DNS

m Einfiigen von Domainname (Schliissel) mit gegebener IP

Adresse (Wert)

m Gegeben Domainname, finde IP Adresse

Domainname

IP Adresse

informatik.cs.unibas.ch
www.unibas.ch
Www.cs.princeton.edu
www.fsf.org

131.152.227.35
131.152.228.33
128.112.136.11
208.118.235.174

Einfiihrung

Andere Beispiele

Symboltabellen
000@000000

nentationen

Anwendung Zweck der Suche Schliissel Wert

Woérterbuch Definition finden Wort Definition
Websuche Finde Webseite Suchbegriff Liste von Webseiten
Compiler Eigenschaften von Variablen Variablenname Typ / Wert
Dateisystem Finde Datei auf Disk Dateiname Ort auf Disk

Log Finde Events Timestamp Logeintrag

Einfithrung Symboltabellen ementationen

0000@00000

Annahmen

m Jeder Schliissel ist eindeutig.
m Werte mit gleichem Schliissel werden ersetzt.

Schliissel sind vergleichbar.

Schliisselgleichheit (Equality) ist definiert.

Schlissel sollen nicht mutierbar sein.

Entspricht verallgemeinerung von Array (mit Schliissel #
Index).

m Wird als Assoziatives Array bezeichnet.

Einfithrung Symboltabellen mentationen

00000e0000

Umsetzung in Programmiersprachen

Symboltabelle werden auch als Map, Assoziatives Array oder
Dictionary bezeichnet.

In Java: Teil der Standardbibliothek
m AbstractMap mit Subklassen HashMap und TreeMap

Map<String, Integer> st = new TreeMap<>();
st.put("aKey", 42);;

st.put ("anotherKey", 17)

Integer value = st.get("aKey");

In Python: Teil der Sprache:

st = {"aKey" : 42, "anotherKey" : 17}
value = st["aKey"]

Symboltabellen: API

class ST[Key, Valuel:

def put(key : Key, value : Value) -> None
def get(key : Key) -> Value

def contains(key : Key) -> Boolean

def delete(key : Key) -> None

def isEmpty() -> Boolean

def size() -> Int

def keys() : Iterator [Keyl]

Symboltabellen
0000000800

Geordnete Symboltabellen: API

Schliissel Werte

min()—>-09:00:00 Chicago
09:00:03 Phoenix

;ﬂAggiQQ;lia-Houston
get(09:00:13) 9:00:59 Chicago
09:01:10 Houston
floor(09:05:00)—=09:03:13 Chicago
09:10:11 Seattle

select(7)—=09:10:25 Seattle

09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—=[09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—09:35:21 Chicago
09:36:14 Seattle

max()—>-09:37:44 Phoenix

size(09:15:00, 09:25:00) ist 5
rank(09:10:25) ist 7

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

Einfiihrung

Symboltabellen
0000000000

Geordnete Symboltabellen: API

m Wenn die Schliissel geordnet werden kdnnen, lassen sich viele
weitere Operationen definieren:

class ST[Key, Valuel:
def min() -> Key
def max () -> Key
def floor (key Key) -> Key
def ceiling(key Key) -> Key
def rank (key Key) Int
def select(k Int) -> None
def deleteMin() -> Nomne
def deleteMax() -> None
def size(lo Key, hi Key) -> Int
def keys () Iterator [Key]
def keys(lo Key, hi Key) -> Iterator [Key]

E\rmmylm Symboltabellen Eun I va\umr—nt ationen

000000000 e

Warnung Gleichheit von ObJekten

m Zwei Arten von Gleichheit in OO Sprachen:
Referenzgleichheit (==) Referenzen sind gleich
(gleiches Objekt)
Objektgleichheit (equals) Inhalt ist gleich

Implementation von benutzerdefinierten Klassen in Java und
Python vergleicht per Default nur Objekt-Id und nicht Inhalt.

m Methoden equals (Java) und __eq__ (Python) miissen
implementiert werden.

Einfache Implementationen

®00000000

Einfache Implementationen

Einfache Implementationen

Einfiihrung Sy
000 000000000

Standard Testbeispiel

Bilde eine Symboltabelle bei der der i—te Input mit dem Wert i
assoziiert ist

J

Input:
Schlissel | S E A R C H E X A M P L
Werte 01 2 3 4 5 6 7 8 9 10 11

Symboltabelle:

Schliissel C E HL M P R S X
Werte 4 12 5 11 9 3 0 7

Einfache Implementationen

00@000000

Elnfache Implementation 1

Datenstruktur Verkettete Liste von Schliissel/Werte-Paaren
Suchen Elemente durchlaufen bis gefunden oder Listenende
Einfiigen Element in Liste? Wert dndern. Ansonsten: Am
Anfang einfiigen.

&
&
A rote Knoten

/ sind neu

0
1

2
3 [RHAL (5[o]

4 E n umbkreiste Eintriige
5

6

7

8

9

auf schwarze Knoten
wurde bei der Suche zugegriffen

ﬂ E sind geiinderte Werte

R {Al2j~{e[E)

[H]s] (R[3] (E[6}~{s]o]

(s f~{cTaf~{r]3] IG Z’f.”ﬁﬁf‘fi‘;fmn-f
S

P10 [plo~{n[9~{x[7}—{H[5s] III ﬂl IB [ee]—~{s[o]
v [Lfu{po{u o +{x[7}~{H[s }~{c[4 }{R]3] IB [E]6]

B X m T N ® P> MmN

Quelle: Abbildung 3.3, Algorithmen, Wayne & Sedgewick

Einfiihrung

Intermezzo: Binary search

Einfache Implementationen
000@00000

m Klassischer Algorithmus zum Suchen in geordnetem Array

m Vergleiche Element mit mittlerem Element des Arrays
m Wiederhole in Teilarray, bis Element gefunden oder Teilarray

keys[]
erfolgreicheSuchenachP 0 1 2 3 4 5 6 7 8 9
To hi mid -
09 4 ACEHLMPRSX /’f"’"”["‘ji';f““:;j"
59 7 MoP RS X~
56 5 NP R TIN
66 6 P T roter Eintrag ist a[mid]
erfolglose Suche nach Q Schleife beendet bei keys[mid] = P: licfert 6 zurick
To hi mid
0 9 4 A CEHLMPRSX
59 7 M PR S X
565 MoP
7 6 6 P
™~ Schieife beendet bei o > hi: licfert 7 zuriick

Quelle: Abbildung 1.9, Algorithmen, Wayne & Sedgewick

def binarysearch(a, value):

lo, hi = 0, len(a) - 1
while lo <= hi:
mid = (lo + hi) // 2
if al[mid] < value:
lo = mid + 1
elif value < al[mid]:
hi = mid - 1
else:
return mid
return None

Einfiihrung S Einfache Implementationen

0O000@0000

Die Rank Funktion

m Gibt Anzahl Elemente zuriick die kleiner als Schliissel sind
m Entspricht genau Index in Array

keys[1 def _rank(a, value):
erfolgreiche SuchenachP 0 1 2 3 4 5 6 7 8 9 lo = 0
To hi mid .
0 9 4 ACEHLMPR RS X schwarze Eintrage hi = len(a) -1
__—sinda[lo..hi] X |
; Z Z : f, RS X while lo <= hi:
6 6 6 b > roter Eintrag ist a[mid] mid = (lo + hi) // 2
™~ s : .
erfolglose Suche nach Q Schleife beendet bei keys [mid] = P: liefert 6 zurack if a[mid] < value:
1o hi mid 1 _ id + 1
09 4 ACEMHLMPRS X o = mi
597 M PR S X elif value < al[mid]l:
56 5 MoP . .
7 6 6 P hi = mid - 1
™\ chlefe beendet bei 1o > hi lifert 7 zurick else:
return mid
Quelle: Abbildung 3.6, Algorithmen return 1lo

Wayne & Sedgewick

Einfache Implementationen

Einfiihrung
[e]e]e} 0O0000e000

Einfache Implementation 2

Datenstruktur Geordnetes Array von Schliissel/Werte-Paaren
Hilfsfunktion rank Anzahl Elemente < k (index in Array)

Operationen:

get: Nutze rank um direkt auf richtiges Element
zuzugreifen.
m Teste ob wirklich richtiges Element an dieser
Stelle ist
put: Nutze rank um Stelle zu finden wo eingefiigt/ersetzt
werden muss.

Details: Jupyter Notebook: Symboltable.ipynb

Einfiihrung S e Einfache Implementationen

0O00000e00

Komplexitat
Worst-case Average-case
Implementation suchen einfiigen suchen einfiigen
Verkettete Liste N N N/2 N

Bindre suche logo(N) N log,(N) N/2

Eumw rung Symboltabelle Einfache Implementationen

000000080

Geordnete Symboltabellen: Komplexitat

Verkettete Liste Binarsuche

suche O(N) O(log N)
einfiigen / 16schen O(N) O(N)
min / max O(N) 0(1)
floor /ceiling O(N) log(N)

rank O(N) O(log(N))
select O(N) ()

iteration (geordnet) N log(N)

Einfache Implementationen
00000000e

Implementation

ZJupyter untitled wes

File Edt View Insett Cel

Kemel Help

| Python [Roo] O
+ % BB A v HEC Coe

. = Celfoobar & i ©

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Populating the interactive namespace from numpy and matplotlib

in [7]: plot(linspace(0, 1000), (linspace(0,1000) **2))

OuL[7]: [<malplollib.lines.Lire2D al 0x29d

202208>]
1000000

800000

600000

00000

200000

m Ausfiihrliche Diskussion und Implementation
Jupyter-Notebook: Symboltable.ipynb

Bindre Suchbaume

900000000000 000000000

Bindre Suchbiume

Einfiihrung

Binare Suchbdume

Ein Bindrer Suchbaum ist ein Bindrbaum mit symmetrischer

Ordnung

Bindre Suchbaume

O@0000000000000000000

Ein Bindrbaum ist
m der leere Baum, oder
m eine Wurzel mit einem linken und
einem rechten Unterbaum
Symetrische Ordnung
Der Schliissel jedes Knotens ist

m grosser als alle Schliissel im linken
Teilbaum

m kleiner als alle Schliissel im rechten
Teilbaum

Wirzel

eine linke Referenz,

ein Teilbaum

g

Elternknoten von A und R
linke
Referenz
von E

rechter
Kindknoten
der Wurzel
null-Referenzen

Schliissel

(RIS Wert, der
CNORRN T

bunden ist
7)
Schliissel Schliissel

Kleiner als € grofer als €

Quelle: Abb. 3.8 / 3.9, Algorithmen, Wayne
& Sedgewick

Einfiihrung p e Bindre Suchbaume

0000000000000 0000000

Implementation

class Node[Key, Valuel:

Auf Key muss Ordnungsrelation
defintert sein

Node (key : Key, value : Value)
key : Key
value : Value

left : Node[Key, Value]
right : Node[Key, Valuel

m Implementation Symboltabelle: Referenz zu Wurzel Knoten

Einfiihrung p Bindre Suchbaume

000@00000000000000000

Reprasentation in Code (mit Zahler)

m Attribute Count zahlt die Anzahl Knoten im Unterbaum
m Erlaubt effiziente Implementation von Operation size
m Kein Traversieren vom Baum nétig.

class Node[Key, Valuel:

Auf Key muss Ordnungsrelation
defintert sein

Node (key : Key, value : Value)

key : Key

value : Value

left : Node[Key, Value]
right : Node[Key, Valuel
count : Int

mentationen Bindre Suchbaume

000080000000 000000000

Suche in Binarbaum

m Um get zu implementieren, miissen wir effizient suchen
kdnnen.

Suche nach Schliissel k: Prinzip:
Fall 1: k < Schliissel in Knoten
m Gehe nach links

erfolgreiche Suche nach R

R ist kleiner als S,
deshalb links suchen

Fall 2: k > Schliissel in Knoten
m Gehe nach rechts

Fall 3: k = Schliissel in Knoten
m Gefunden

hschliissel
iiberein

Quelle: Abb. 3.11, Algorithmen, Wayne &
Sedgewick

Einfiihrung

Suche in Binarbaum

Bindre Suchbaume

000080000000 000000000

m Um get zu implementieren, miissen wir effizient suchen

konnen.

Suche nach Schliissel k: Prinzip:
Fall 1: k < Schliissel in Knoten
m Gehe nach links
Fall 2: k > Schliissel in Knoten
m Gehe nach rechts
Fall 3: k = Schliissel in Knoten
m Gefunden

erfolglose Suche nach T

T ist grofer als S,
deshalb rechts suchen

R
{

T ist kleiner als X,
deshalb links suchen
Referenz ist null, desha
ist T nicht im Baum
(erfolglose Suche)

Quelle: Abb. 3.11, Algorithmen, Wayne &
Sedgewick

Einfiihrung

Bindre Suchbaume

0O0000e000000000000000

Suche in Binarbaum

m Die Suche, ausgehend von Knoten root kann einfach rekursiv
implementiert werden.

m Suche wird einfach in "richtigem” Teilbaum fortgesetzt.

def get(key, root):

if root ==
return
elif key <
return
elif key >
return

None:

None

root.key:

get (key, root.left)
root.key:

get (key, root.right)

elif key == root.key:

return

root.value

Einfiihrung

Bindre Suchbaume

000000800000 000000000

Einfligen in Bindarbaum

m put l3sst sich fast so einfach wie get implementieren.

L einfiigen
Suche nach Schliissel. S,”’Rfl“/
Zwei Falle:
m Schliissel gefunden — Wert neu
setzen o)
e - . 10
m Schlissel nicht in Baum — Neuen . <
Knoten hinzufiigen. .=
\ 3

Setzt die Referenzen 7
neu und erhoht die
Zihler auf dem
Weg nach oben

Quelle: Abb. 3.12, Algorithmen, Wayne &
Sedgewick

Einfiihrung eme e Bindre Suchbaume

0000000 @0000000000000

Einfligen in Bindarbaum

m Die Operation put ausgehen von Knoten root kann einfach
rekursiv implementiert werden.

m Auf dem "Riickweg” wird der Zahler fiir die Anzahl Knoten im
Unterbaum aktualisiert.

m Beachte: Teilbaum wird in jeder Rekursion neu gesetzt.

def put(key, value, root):
if (root == None):
return Node(key, value, count = 1)
elif key < root.key:
root.left = put(key, value, root.left)
elif key > root.key:
root.right = put(key, value, root.right)

elif key == root.key:
root.value = value
root.count = 1 + size(root.left) + size(root.right)

return root

Einfiihrung S ementationen Bindre Suchbaume

0O0000000e000000000000

Auspragung des Binarbaums

m Selbe Menge von Schliisseln fiihrt zu verschiedene Bdumen
m hingt von Einfligereihenfolge ab.

typischer Fall

schlimmster
Fall

bester Fall m
(Q ()
(A B} (RY (X

Quelle: Abb. 3.14, Algorithmen, Wayne & Sedgewick

Bindre Suchbaume
000000000800000000000

Geordnete Symboltabellen: API

Schliissel Werte

min()—>-09:00:00 Chicago
09:00:03 Phoenix

;ﬂAggiQQ;lia-Houston
get(09:00:13) 9:00:59 Chicago
09:01:10 Houston
floor(09:05:00)—=09:03:13 Chicago
09:10:11 Seattle

select(7)—=09:10:25 Seattle

09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—=[09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—09:35:21 Chicago
09:36:14 Seattle

max()—>-09:37:44 Phoenix

size(09:15:00, 09:25:00) ist 5
rank(09:10:25) ist 7

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

Bindre Suchbaume
000000000080000000000

Quiz: Minimum und Maximum

Minimum Kleinster Schliissel in Symboltabelle
Maximum Grosster Schliissel in Symboltabelle

m Wie finden wir Minimum und Maximum?

Bindre Suchbaume
00000000000e000000000

Quiz: Floor und Ceiling

Floor Grosster Schliissel < gegebener Schliissel
Ceiling Kleinster Schliissel > gegebener Schliissel

m Wie finden wir Floor und Ceiling?

Ordnungsbasierte Operationen

mentationen

Zjupyter untitied aisas
Fle Edt View Insert Cell Kemel Help # | Python [Root] O
+ 3

In 1713

out 7]

@B A v M B C Coe v B Celfoobar & & O

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Populaling Lhe inleraclive namespace [rom numpy and malplollib

plot (linspace (0, 1000}, (Linspace(0,1000) **2))
[<matplotlib. lines.Tine2D at 0x29d8be022a8>]

1000000

800000

00000

00000

200000

20 0 EQ EQ

m Ordnungsbasierten Operationen sind einfach zu
implementieren.

m Ausfiihrliche Diskussion und Implementation
Jupyter-Notebook: Symboltable.ipynb

Bindre Suchbaume

000000000000 e00000000

Einfiihrung Sy Implementationen Bindre Suchbaume

000000000 0000000000000 e0000000

Loschen von Knoten: Einfache Methode

Einfachste Methode zum Ldschen: Tombstone

m Finde Knoten

m Markiere diesen als geldscht (z.B. indem Wert auf null
gesetzt wird).

m Schlussel bleibt im Baum

\ % g

© ®
@
g ® o ®
Problem: Speicherverschwendung bei vielen geléschten
Elementen.

mentationen Bindre Suchbaume

0000000000000 0e000000

Loschen von minimalem Key

m Nach Links bis linker Knoten null ist
m Diesen Knoten durch rechten Knoten ersetzten
m Knotenzidhler count aktualisieren.

def deleteMin(root):

if root.left == None:
return root.right
else:
root.left = deleteMin(x.left);
root.count = 1 + size(root.left) + size(root.right);

return root

links gehen, die rechte Referenz Referenzen und Knotenzihlung
bis die linke dieses Knotens nach den rekursiven
null-Referenz zuriickliefern Aufrufen aktualisieren

erreicht wird

P

verfiigbar fiir die
Speicherbereinigung

nentationen Bindre Suchbaume

Einfiihrung

Loschen nach Hibbard

0000000000000V 0e00000

m Knoten t mit zu |dschendem Schlissel suchen.

Fall 1: Keine Kinder

Knotenzéhler aktualisieren

\\ 5 S
1 B
X ®
T Auf leeren Baum (null)
setzen

Zu léschender Knoten

m Parent von t auf leeren Baum (null) setzen.

m Knotenzidhler count aktualisieren.

nentationen Bindre Suchbaume
000000000000000080000

Einfiihrung S

Loschen nach Hibbard

m Knoten t mit zu |dschendem Schlissel suchen.

Fall 2: 1 Kind

Knotenzéhler aktualisieren 7

6/0
Zu loschender Knoten /

Durch Kind ersetzen

m Parent von t neu setzen

m Knotenzihler count aktualisieren.

Einfiihrung p e Bindre Suchbaume

Loschen nach Hibbard

m Knoten t mit zu |dschendem Schliissel suchen.

Fall 3: 2 Kinder

zu loschender Knoten

" Nachfolger
min(t.right)

m Kleinster Knoten x im rechten Unterbaum von t suchen
m Kleinster Knoten im Unterbaum léschen (deleteMin)
m x anstelle von t setzten

m Knotenzihler count aktualisieren.

Einfiihrung S e lementationen Bindre Suchbaume

000000000000 000000e00

Loschen nach Hibbard: Probleme

m Warum wird durch Nachfolger und nicht Vorgdnger ersetzt?
m Entscheidung willkiirlich und unsymmetrisch.

m Konsequenz: Baume nicht zufillig = Performanceeinbussen

m Praxis: Manchmal Vorganger und manchmal Nachfolger
verwenden.

Offenes Problem!

Elegante und effiziente Lésung fiir Loschen in Bindrbaum.

Einfiihrung E a Einfache Implementationen Bindre Suchbaume

000000000000 0000000e0

Komplexitat

Worst-case Average-case
Implementation suchen einfiigen I8schen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo(N) N N log,(N) N/2 N

Bindrer Suchbaum N N N log,(N) logo(N) VN

Bindre Suchbaume
00000000000000000000

Implementation

Zjupyter untitied ausa
Fle Edt Vew et Col Kemel Help

| Python [Roof] O
B+ x @A B 4 v N EC coe

Y @ Celloobar & @ ©

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline
Populating Lhe inleraclive namespace Lrom aunpy and malplollib

In 171 plot(linspace(0, 1000), (lins)

ce (0,1000) **2))
Out[7]: [<matplotlib.linas.Tine2D at 0x29d8be027a8>]

1000000

800000

00000

00000

200000

20 W0 EQ ED 000

Jupyter-Notebook: Symboltable.ipynb

	Einführung
	

	Symboltabellen
	

	Einfache Implementationen
	

	Binäre Suchbäume
	

