Algorithmen und Datenstrukturen
B6. Symboltabellen®

Marcel Liithi and Gabriele Roger

Universitat Basel

03. April 2019

1
Folien basieren Teilweise auf Vorlesungsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/31ElementarySymbolTables-2x2.pdf

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 1/45

https://algs4.cs.princeton.edu/lectures/31ElementarySymbolTables-2x2.pdf

Algorithmen und Datenstrukturen
03. April 2019 — B6. Symboltabellen®

?Folien basieren Teilweise auf Vorlesu ngsfolien von Sedgewick & Wayne
https://algs4.cs.princeton.edu/lectures/31ElementarySymbolTables-2x2.pdf

B6.1 Einflihrung
B6.2 Symboltabellen
B6.3 Einfache Implementationen

B6.4 Binare Suchbiaume

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019

2 /45

https://algs4.cs.princeton.edu/lectures/31ElementarySymbolTables-2x2.pdf

B6. Symboltabellen2 Einfiihrung

B6.1 Einfiihrung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 03. April 2019 3 /45

B6. Symboltabellen3

Ubersicht

—| Sortieren

Komplexitats-
analyse

Fundamentale
Datenstrukturen

AD | Suchen]

—‘ Graphen |

—| Strings |

| Weiterfiihrende
Themen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

03. April 2019

Einfiihrung

4 /45

B6 Symboltabe\len4 Einfithrung

Ubersicht iiber nachsten Vorlesungen

Thema: Symboltabellen

» Einfiihrung und einfache Implementationen (Diese Woche)
» Bindre Suchbiume (Diese Woche)

» 2-3-Biume und Rot-Schwarz Baume (Nachste Woche)

» Hashtabellen (N&chste Woche)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 5/ 45

B6. Symboltabellen5 Symboltabellen

B6.2 Symboltabellen

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 03. April 2019 6 /45

B6 Symboltabe\len6

Symboltabellen

Abstraktion fiir Schliissel/Werte Paar

Grundlegende Operationen

» Speichere Schliissel mit dazugehérendem Wert.

» Suche zu Schliissel gehdrenden Wert.
» Schliissel und Wert 16schen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Symboltabellen

03. April 2019

7

B6 Symboltabe\len7 Symboltabellen

Beispiel: DNS

» Einfiigen von Domainname (Schliissel) mit gegebener IP
Adresse (Wert)

» Gegeben Domainname, finde IP Adresse

Domainname IP Adresse
informatik.cs.unibas.ch 131.152.227.35
www.unibas.ch 131.152.228.33
www.cs.princeton.edu 128.112.136.11
www.fsf.org 208.118.235.174

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 8 /45

B6 Symboltabe\len8 Symboltabellen

Andere Beispiele

Anwendung Zweck der Suche Schliissel Wert

Woérterbuch Definition finden Wort Definition
Websuche Finde Webseite Suchbegriff Liste von Webseiten
Compiler Eigenschaften von Variablen Variablenname Typ / Wert
Dateisystem Finde Datei auf Disk Dateiname Ort auf Disk

Log Finde Events Timestamp Logeintrag

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 9 /45

B6 Symboltabe\leng Symboltabellen

Annahmen

> Jeder Schliissel ist eindeutig.
> Werte mit gleichem Schliissel werden ersetzt.

> Schliissel sind vergleichbar.
» Schliisselgleichheit (Equality) ist definiert.

» Schliissel sollen nicht mutierbar sein.

» Entspricht verallgemeinerung von Array (mit Schliissel #
Index).

> Wird als Assoziatives Array bezeichnet.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 10 / 45

B6. Symboltabellen? Symboltabellen

Umsetzung in Programmiersprachen

Symboltabelle werden auch als Map, Assoziatives Array oder
Dictionary bezeichnet.

In Java: Teil der Standardbibliothek
» AbstractMap mit Subklassen HashMap und TreeMap

Map<String, Integer> st = new TreeMap<>();
st.put ("aKey", 42);;

st.put ("anotherKey", 17)

Integer value = st.get("aKey");

In Python: Teil der Sprache:

st = {"aKey" : 42, "anotherKey" : 17}
value = st["aKey"]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 11 / 45

B6. Symboltabellen'! Symboltabellen

Symboltabellen: API

class ST[Key, Valuel]:

def put(key : Key, value : Value) -> None
def get(key : Key) -> Value

def contains(key : Key) -> Boolean

def delete(key : Key) -> None

def isEmpty() -> Boolean

def size() -> Int

def keys() : Iterator[Keyl]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 12 / 45

B6. Symboltabellen’?

Geordnete Symboltabellen: API

Schliissel Werte

min(O)—>-09:00:00 Chicago
09:00:03 Phoenix

"ggfoo/ua Houston
get(09:00:13) :00:59 Chicago
09:01:10 Houston
floor(09:05:00)—-09:03:13 Chicago
09:10:11 Seattle

select(7)—-09:10:25 Seattle

09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—|09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—09:35:21 Chicago
09:36:14 Seattle

max()—>09:37:44 Phoenix

size(09:15:00, 09:25:00) ist 5
rank(09:10:25) ist 7

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Symboltabellen

03. April 2019

13 / 45

B6 Symboltabe\len13

Geordnete Symboltabellen: API

» Wenn die Schliissel geordnet werden kdnnen, |dssen sich viele

weitere Operationen definieren:

class ST[Key, Valuel:

def min() -> Key
def max () -> Key

def floor(key : Key) -> Key
def ceiling(key : Key) -> Key

def rank(key : Key) : Int
def select(k : Int) -> None

def deleteMin() -> None
def deleteMax () -> None

def size(lo : Key, hi : Key) -> Int

def keys() : Iterator [Key]

Symboltabellen

def keys(lo : Key, hi : Key) -> Iterator[Keyl

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

03. April 2019

14 /

45

B6 Symboltabe\len14 Symboltabellen

Warnung: Gleichheit von Objekten

» Zwei Arten von Gleichheit in OO Sprachen:

Referenzgleichheit (==) Referenzen sind gleich
(gleiches Objekt)
Objektgleichheit (equals) Inhalt ist gleich

Achtung!
Implementation von benutzerdefinierten Klassen in Java und
Python vergleicht per Default nur Objekt-Id und nicht Inhalt.

» Methoden equals (Java) und __eq__ (Python) miissen
implementiert werden.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 15 / 45

B6. Symboltabellen15 Einfache Implementationen

B6.3 Einfache Implementationen

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 03. April 2019 16 / 45

B6 Symboltabe\len16 Einfache Implementationen

Standard Testbeispiel

Bilde eine Symboltabelle bei der der i—te Input mit dem Wert /
assoziiert ist

Input:
Schlissel |[S E A R C H E X A M P L E
Werte 01 2 3 4 5 6 7 8 9 10 11 12

Symboltabelle:

Schliissel

A CE HL M P R S X
Werte 8 4 9 3 0 7

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 17 / 45

B6. Symboltabellen’’

Einfache Implementationen

Einfache Implementation 1

Datenstruktur Verkettete Liste von Schliissel/Werte-Paaren
Suchen Elemente durchlaufen bis gefunden oder Listenende
Einfligen Element in Liste? Wert dndern. Ansonsten: Am

'-t"'z
&
S First

0

> X m T N ® > mMmWn
© o N U AW N R

=

P 10
L11
E 12

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 18 /

Anfang einfiigen.

rote Knoten

/5iminrz¢

wande S o S Serien

e

[R[3]~{al2] [s[o]

E n umkrgf'sru}:‘imrizgu

ﬂ E sind geiinderte Werte

R {Al2j~{e[E)

[H]s] (R[3] (E[6}~{s]o]

(] s {4 ~{R[3 —{ALE] o sichs b
(]9} H]s] (R[3f~{a]8}~{e[6/—{5]0]

[P o~ u 9+ x[7F-{n]s}~{c[a-{rR[3}-{aT8 ={e6]~{5]0]
II ﬂl IIIEI II II II ﬂl IB [E]e]

Quelle: Abbildung 3.3, Algorithmen, Wayne & Sedgewick

45

B6 Symboltabe\len18

Intermezzo: Binary search

Einfache Implementationen

» Klassischer Algorithmus zum Suchen in geordnetem Array

> Vergleiche Element mit mittlerem Element des Arrays
» Wiederhole in Teilarray, bis Element gefunden oder Teilarray

leer.
keys[]

erfolgreicheSuchenachP O 1 2 3 4 5 6 7 8 9

To hi mid

09 ACEHLMPRSX shvarze inrege

597 M P R S X o

56 5 M P T

6 6 6 i ~ roter Eintrag ist almid]
erfolglose Suche nach Q Schlefe beendet bei keysmid] = P: licfert 6 zurtick

To hi mid

0 9 4 A CEHLMPRSX

59 7 MOP RS X

56 5 MoP

766 P

™~ Schleife beendet bei 1o > hi: liefert 7 zurtick

Quelle: Abbildung 1.9, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

def binarysearch(a, value):
lo, hi = 0, len(a) -1
while lo <= hi:
mid = (lo + hi) // 2
if al[mid] < value:
lo = mid + 1
elif value < al[mid]:
hi = mid - 1
else:
return mid
return None
03. April 2019

19 /

45

B6. Sym!:)oltabe\lenlg Einfache Implementationen

Die Rank Funktion

» Gibt Anzahl Elemente zuriick die kleiner als Schliissel sind
» Entspricht genau Index in Array

keys[] def _rank(a, value):
erfolgreiche SuchenachP 0 1 2 3 4 5 6 7 8 9 lo = 0
To hi mid .
0 9 4 ACEHLMPR RS X schwarze Eintrage hi = len(a) - 1
__—sinda[lo..hi] . K
: : ; m ;': RS X while lo <= hi:
6 6 6 P > roter Eintrag ist a[mid] mid = (lo + hi) // 2
™~ s : .
e"°'9'°‘:5“‘:‘j"“f’d° Schleife beendet bei keys [mid] = P: liefert 6 zurack if al[mid]l < value:
o 1T m .
094 ACEHLMEPRSX lo = mid + 1
597 M PR S X elif value < al[mid]:
56 5 Mop . .
7 6 6 P hi = mid - 1
Schleife beendet bei 1o > i liefert 7 zuriick else:
return mid
Quelle: Abbildung 3.6, Algorithmen return 1lo

Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 20 /

45

B6 Symboltabe\lenZU Einfache Implementationen

Einfache Implementation 2

Datenstruktur Geordnetes Array von Schliissel /Werte-Paaren
Hilfsfunktion rank Anzahl Elemente < k (index in Array)

Operationen:

get: Nutze rank um direkt auf richtiges Element
zuzugreifen.

P> Teste ob wirklich richtiges Element an dieser
Stelle ist

put: Nutze rank um Stelle zu finden wo eingefiigt/ersetzt
werden muss.

Details: Jupyter Notebook: Symboltable.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019

21 / 45

B6 Symboltabe\len21

Komplexitat

Einfache Implementationen

Worst-case Average-case
Implementation suchen einfiigen suchen einfiigen
Verkettete Liste N N N/2 N
Bindre suche logo(N) N logo(N) N/2
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019

22

B6 Symboltabe\len22 Einfache Implementationen

Geordnete Symboltabellen: Komplexitat

Verkettete Liste Binarsuche

suche O(N) O(log N)
einfiigen / 18schen O(N) O(N)
min / max O(N) Oo(1)
floor /ceiling O(N) log(N)

rank O(N) O(log(N))
select O(N) 0(1)

iteration (geordnet) N log(N) N

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 23 / 45

B6. Symboltabellen®>

Einfache Implementationen

Implementation

ZJupyter untitied wses

Fie Edt View Inset Cell Kemel Help

|Python Rootl O
+ 3 BB AV M EC e

© = Celfoobar & & @

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline
Papulating the intaractive namespace from mumpy and matplotlib

In [7): plot(linspace (0, 1000), (linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.lineZD at 0x29ds]

12208>]
1000000

800000

00000

400000

200000

» Ausfiihrliche Diskussion und Implementation
Jupyter-Notebook: Symboltable.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 24 / 45

B6. Symboltabellen24 Bindre Suchbdume

B6.4 Binare Suchbaume

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 03. April 2019 25 / 45

B6 Symboltabe\len25 Bindre Suchbdume

Binare Suchbaume

Ein Bindrer Suchbaum ist ein Bindrbaum mit symmetrischer
Ordnung

Waurzel

Ein Binarbaum ist e ke B /

ein Teilbaum

» der leere Baum, oder

» eine Wurzel mit einem linken und % rechter
. Kindknoten
einem rechten Unterbaum / der Warzel

null-Referenzen

Symetrische Ordnung

Der Schliissel jedes Knotens ist] IAmmmm,muAum/R -
. . . . Iu/muz
> grosser als alle Schliissel im linken von'
. Y Wert, der
Teilbaum ,(R R! ——

» kleiner als alle Schliissel im rechten
Teilbaum

Sc
Kleiner als E gr{hu alsE

Quelle: Abb. 3.8 / 3.9, Algorithmen, Wayne
& Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 26

/45

B6 Symboltabe\len26

Implementation

class Node[Key, Valuel:

Auf Key muss Ordnungsrelation

defintert sein

Node (key : Key, value

key : Key
value : Value

left : Node[Key, Value]
right : Node[Key, Valuel

Bindre Suchbdume

» Implementation Symboltabelle: Referenz zu Wurzel Knoten

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

03. April 2019 27 / 45

B6 Symboltabe\len27

Reprasentation in Code (mit Zahler)

Bindre Suchbdume

> Attribute Count zidhlt die Anzahl Knoten im Unterbaum
> Erlaubt effiziente Implementation von Operation size

> Kein Traversieren vom Baum notig.

class Node[Key, Valuel:

M. Liithi, G. Réger (Universitit Basel)

Auf Key muss Ordnungsrelation
defintert sein

Node (key : Key, value : Value)

key : Key

value : Value

left : Node[Key, Valuel
right : Node[Key, Valuel]
count : Int

Algorithmen und Datenstrukturen

03. April 2019 28 / 45

Bindre Suchbdume

B6. Symboltabellen®®

Suche in Binarbaum

> Um get zu implementieren, miissen wir effizient suchen
kdnnen.
Suche nach Schliissel k: Prinzip:
Fall 1: k < Schliissel in Knoten
» Gehe nach links

Fall 2: k > Schliissel in Knoten
» Gehe nach rechts

erfolgreiche Suche nach R

Rist kleiner als S,
deshalb links suchen

Fall 3: k = Schliissel in Knoten Sepgede
» Gefunden
de gefunden
er e Suche
deshalb Wert zuriickgeben

erfolglose Suche nach T

T ist grofer als S,
deshalb rechts suchen

163
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 29 /

45

B6 Symboltabe\len29 Bindre Suchbdume

Suche in Binarbaum

» Die Suche, ausgehend von Knoten root kann einfach rekursiv
implementiert werden.

» Suche wird einfach in "richtigem” Teilbaum fortgesetzt.

def get(key, root):
if root == None:
return None
elif key < root.key:
return get(key, root.left)
elif key > root.key:
return get(key, root.right)
elif key == root.key:
return root.value

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 30 / 45

B6 Symboltabe\len30 Bindre Suchbdume

Einfligen in Bindarbaum

P put lasst sich fast so einfach wie get implementieren.

L einfigen

Suche nach Schliissel. SucherachL "
Zwei Fille:

null-Referenz

» Schliissel gefunden — Wert neu
setzen J—

neuen Knoten 43@
» Schliissel nicht in Baum — Neuen s /o
Knoten hinzufiigen. g

3
Setzt die Referenzen 7
neu und erhoht die

Zihler auf dem

Weg nach oben

Quelle: Abb. 3.12, Algorithmen, Wayne &
Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 31/ 45

B6 Symboltabe\len31 Bindre Suchbdume

Einfligen in Bindarbaum

» Die Operation put ausgehen von Knoten root kann einfach
rekursiv implementiert werden.

» Auf dem "Riickweg” wird der Zahler fiir die Anzahl Knoten im
Unterbaum aktualisiert.

P Beachte: Teilbaum wird in jeder Rekursion neu gesetzt.

def put(key, value, root):
if (root == None):
return Node(key, value, count = 1)
elif key < root.key:
root.left = put(key, value, root.left)
elif key > root.key:
root.right = put(key, value, root.right)

elif key == root.key:
root.value = value
root.count = 1 + size(root.left) + size(root.right)

return root

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 32 /45

B6. Symboltabe\len32 Binire Suchbiume

Auspragung des Binarbaums

> Selbe Menge von Schliisseln fiihrt zu verschiedene Baumen
» hiangt von Einfligereihenfolge ab.

typischer Fall

bester Fall 0
(Q O
OEOOR

schlimmster
Fall

Quelle: Abb. 3.14, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 33/

45

B6. Symboltabellen®>

Geordnete Symboltabellen: API

Schliissel Werte

min(O)—>-09:00:00 Chicago
09:00:03 Phoenix

"ggfoo/ua Houston
get(09:00:13) :00:59 Chicago
09:01:10 Houston
floor(09:05:00)—-09:03:13 Chicago
09:10:11 Seattle

select(7)—-09:10:25 Seattle

09:14:25 Phoenix

09:19:32 Chicago

09:19:46 Chicago

keys(09:15:00, 09:25:00)—|09:21:05 Chicago
09:22:43 Seattle

09:22:54 Seattle

09:25:52 Chicago
ceiling(09:30:00)—09:35:21 Chicago
09:36:14 Seattle

max()—>09:37:44 Phoenix

size(09:15:00, 09:25:00) ist 5
rank(09:10:25) ist 7

Quelle: Abbildung 3.1, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bindre Suchbdume

03. April 2019

34 / 45

B6. Symboltabe\len34 Bindre Suchbdume

Quiz: Minimum und Maximum

Minimum Kleinster Schliissel in Symboltabelle
Maximum Grosster Schliissel in Symboltabelle

—
—

o RO
~ N -
m/
GO
()

» Wie finden wir Minimum und Maximum?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019

35 / 45

B6. Symbol‘u:abellen35 Bindre Suchbdume

Quiz: Floor und Ceiling

Floor Grosster Schliissel < gegebener Schliissel
Ceiling Kleinster Schliissel > gegebener Schliissel

FIoor(G)

\

Ceﬂlng(Q)

FIoor(D)

» Wie finden wir Floor und Ceiling?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019

36 / 45

B6 Symboltabe\len36 Bindre Suchbdume

Ordnungsbasierte Operationen

Zjupyter untitied ausas

Fie Edt View Inset Cell Kemel Help # | Python [Roof] O

B+ A0 4 ¢ M B C cCoe ~ & Celloobar & @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Populaling Lhe inleraclive namespace [rom numpy and malplollib

In 1713 plot(linspace(0, 1000), (linspace(0,1000) **2))

Outl71: [<matplotlib.lines.Line2D at 0x29dbe022et>)
1000000
00000
00000
00000
200000
200 w0 &0 EQ 00

» Ordnungsbasierten Operationen sind einfach zu
implementieren.

» Ausfiihrliche Diskussion und Implementation
Jupyter-Notebook: Symboltable.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 37 / 45

B6 Symboltabe\len37

Loschen von Knoten: Einfache Methode

Einfachste Methode zum Ldschen: Tombstone

» Finde Knoten

» Markiere diesen als geloscht (z.B. indem Wert auf null
gesetzt wird).

» Schlissel bleibt im Baum

I
o @ ® f
® ™)

@5@@ g ®

Problem: Speicherverschwendung bei vielen geldschten
Elementen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019

Bindre Suchbdume

38 / 45

B6. Sym!:)oltabe\len38 Binire Suchbiume

Loschen von minimalem Key

» Nach Links bis linker Knoten null ist
» Diesen Knoten durch rechten Knoten ersetzten
> Knotenziahler count aktualisieren.

def deleteMin(root):

if root.left == None:
return root.right
else:
root.left = deleteMin(x.left);
root.count = 1 + size(root.left) + size(root.right)

return root

links gehen, die rechte Referenz Referenzen und Knotenzihlung
bis die linke dieses Knotens nach den rekursiven
null-Referenz zuriickliefern Aufrufen aktualisieren

erreicht wird

AN WA
| P

verfiigbar fiir die
Speicherbereinigung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019

39 /

45

B6. Symboltabe\len39 Binire Suchbiume

Loschen nach Hibbard

» Knoten t mit zu ldschendem Schliissel suchen.

Fall 1: Keine Kinder

Knotenzéhler aktualisieren

.
X

T Auf leeren Baum (null)
setzen

Zu léschender Knoten

» Parent von t auf leeren Baum (null) setzen.

» Knotenzihler count aktualisieren.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 40 /

45

B6. Symboltabellen*’

Loschen nach Hibbard

» Knoten t mit zu ldschendem Schliissel suchen.

Fall 2: 1 Kind

Knotenzéhler aktualisieren 7

6/0
Zu léschender Knoten /

Durch Kind ersetzen

> Parent von t neu setzen

> Knotenzihler count aktualisieren.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bindre Suchbdume

03. April 2019

41/

B6 Symboltabe\len41

Loschen nach Hibbard

Bindre Suchbdume

» Knoten t mit zu |6schendem Schliissel suchen.

Fall 3: 2 Kinder
[\
\
zu loschender Knote] =
i laschen \E e 2 et /C

min(t.right)

erreicht wird

den

> Kleinster Knoten x im rechten Unterbaum von t suchen
» Kleinster Knoten im Unterbaum I6schen (deleteMin)
> x anstelle von t setzten

» Knotenzadhler count aktualisieren.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 42 / 45

B6 Symboltabe\len42 Bindre Suchbdume

Loschen nach Hibbard: Probleme

» Warum wird durch Nachfolger und nicht Vorgdnger ersetzt?

» Entscheidung willkiirlich und unsymmetrisch.
» Konsequenz: Baume nicht zufillig = Performanceeinbussen

» Praxis: Manchmal Vorgidnger und manchmal Nachfolger
verwenden.

Offenes Problem!
Elegante und effiziente Lésung fiir Loschen in Bindrbaum.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019

43 / 45

B6. Symboltabellen®>

Komplexitat

Bindre Suchbdume

Worst-case Average-case
Implementation suchen einfiigen I8schen suchen (hit) einfiigen 18schen
Verkettete Liste N N N N/2 N N/2
Binire suche logo(N) N N log,(N) N/2 N
Binirer Suchbaum N N N log, () logo(N) VN

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

03. April 2019 44 / 45

B6. Symboltabellen**

Bindre Suchbdume

Implementation

ZJupyter untitled wsen

Fie Edt View Inset Cell Kemel Help # | Python [Roof] O
B+ % A B 4% W EC code £ Celloobar & & O

Algorithmen und Datenstrukturen

Interaktive Experimente
In 13]: %pylab inline

Populating the interactive namespace [rom numpy and matplotlib

In [71: plot(linspace(0, 1000), (Linspace(0,1000) **2))
Outl7]: l<matplotlib.lines.Line2D at 0x29dsbe022et>]

1000000

800000

500000

00000

200000

0 W0 EQ D 00

Jupyter-Notebook: Symboltable.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 03. April 2019 45 / 45

	Einführung
	

	Symboltabellen
	

	Einfache Implementationen
	

	Binäre Suchbäume
	

