Algorithmen und Datenstrukturen
B5. Heaps und Heapsort

Marcel Liithi and Gabriele Roger
Universitat Basel

28. Marz 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 1/28

Algorithmen und Datenstrukturen
28. Mé&rz 2019 — B5. Heaps und Heapsort

B5.1 Einfiihrung
B5.2 Heaps
B5.3 Warteschlangen mit Heaps

B5.4 Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

28. Marz 2019 2 /28

B5. Heaps und Heapsort Einfiihrung

B5.1 Einfiihrung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 3/28

B5. Heaps und Heapsort

Ausblick auf Vorlesung

» Die Datenstruktur Heap

» Heaps zur Implementation von Priorityqueues

» Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Einfiihrung

28. Marz 2019 4 /28

B5. Heaps und Heapsort Einfiihrung

Informatiker des Tages

» Gewinner Turing Award (1978)

> U.a. fiir Arbeit an Analyse von
Algorithmen

P Entwickler des Treesort
Algorithmus (Vorganger von
Heapsort)

» Verbesserung von Heapsort,
nachdem dieser von J. Williams
entwickelt wurde.

» Auch bekannt fiir: Floyd-Warshall
Algorithmus

» Findung von kiirzesten Pfaden in
Graphen.

Robert W. Floyd

Floyd, R. W. (1979). " The paradigms of programming”.
Communications of the ACM. 22 (8).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 5 /28

B5. Heaps und Heapsort

B5.2 Heaps

Heaps

B5. Heaps und Heapsort Heaps

Bijektion - Array / Vollstandiger Bindrbaum

P Jedes Array kann als vollstandiger Binarbaum interpretiert
werden:
» Linker Teilbaum: Index Wurzel * 2
» Rechter Teilbaum: Index Wurzel * 2 4- 1

Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 7 /28

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 6 /28
B5. Heaps und Heapsort Heaps
Heap
Definition: Heap
Ein bindrer Baum / Array ist Heap geordnet, wenn der Schliissel in
jedem Knoten grosser gleich dem Schliissel seiner beiden Kindern
(sofern vorhanden) ist.
Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 8 /28

B5. Heaps und Heapsort Heaps

Heap Ordnung

Theorem
Der grésste Schliissel in einem Heap-geordneten Bindrbaum
befindet sich an der Wurzel.

Beweis.
Induktion iiber die Baumgrosse O

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 9 /28

B5. Heaps und Heapsort

Binarer Heap

Definition: Binarer Heap

Ein bindrer Heap ist eine Sammlung von Schliisseln, die in einem
vollstandigen Heap-geordneten Bindrbaum angeordnet sind und in
einem Array ebenenweise reprasentiert werden (das erste Feld des
Arrays wird nicht verwendet).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019

Heaps

10 /

28

B5. Heaps und Heapsort Heaps

Binarer Heap

i 0 1 2 3 4 5 6 7 8 910 11
al[i] - T S R P N O A E I H G
T
N
}{\\
m
E T H G

Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 11 /28

B5. Heaps und Heapsort

B5.3 Warteschlangen mit Heaps

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019

12/

Warteschlangen mit Heaps

B5. Heaps und Heapsort

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen
def insert(k Item) -> Nomne

Groesstes Element zurueckgeben
def max () -> Item

Groesstes Element entfernen und zurueckgeben
def delMax() -> Item

Ist die Queue leer?
def isEmpty() -> bool

Anzahl Elemente in der Priority (ueue
def size() -> int

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019

13/

Warteschlangen mit Heaps

B5. Heaps und Heapsort

Beobachtung

Array implementation von Max-heap hat grosstes Element immer
an Stelle 1 .

» Implementation von max ist trivial

Problem: Wir miissen wenn wir beim insert und delMax die
Heapbedingung erfiillen kdnnen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019

14 /

Warteschlangen mit Heaps

28

B5. Heaps und Heapsort

Beobachtung (2)

» Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...

... ohne dabei explizite Verweise verwalten zu miissen .

» Der Baum hat die Hohe [log,(N)]

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log,(N))
Operationen nach Entfernen oder Einfiigen eines Elements die
Heapbedingung wiederherstellen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019

15 /

Warteschlangen mit Heaps

28

B5. Heaps und Heapsort

Element einfiigen

> Blatt wird an letzter Stelle
im Array eingefiigt
> entspricht Blatt ganz
rechts

Einfiigen eines
neuen Elements

» Heap Bedingung wird durch
ausfiihren von swim
wiederhergestellt

- Hinzufiigen des Schliissels
2um Heap verletzt die
Heap-Ordnung

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019

16 /

Warteschlangen mit Heaps

28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation swim

» Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfiillt ist.

» Braucht maximal log,(N) + 1
Vergleiche.
def swim(a, k):

while k > 1 and alk/2] < alk]:
alk/2], alk]l = alk], alk/2]

k = k/2
Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 17 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Grosstes Element entfernen

» Wourzel (grosstes Element)
. Entfernen des <— zu entfernender
wird entfernt oedGian Elements O Nyt

- mussn’
> Blatt ganz rechts wird an Q) 2 'b
Wourzel gesetzt & D @ @)~ ssetmi

Wurzel tauschen

» Heap Bedingung wird durch e
ausfiihren von sink () ﬁ
wiederhergestellt Q0 ®

® © © 1" ey

sinkt nach
unten

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &

B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation sink

» Knoten an Position k in Array a

verletzt die Heap-Ordnung

sinkt nach unten bis Heap (Kleiner l\AiLf
Bedingung wieder erfiillt ist. JO

» Element wird mit grosserem Kind (73 5
vertauscht.

» Braucht maximal 2log,(N)
Vergleiche.

def sink(a, k): 5
while 2 * k <= len(a): o 0 o

0
j =2 %k GO @

if j < len(a) and aljl < alj+1]:

j =1 Quelle: Abbiludung 2.29: Algorithmen,
if not alk] < a [J] H Sedgewick & Wayne
break
aljl, alk]l = alk]l, aljl
k=3
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 19 / 28

Wayne
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 18 / 28
B5. Heaps und Heapsort Warteschlangen mit Heaps
Implementation
ZJupyter Untited wosmes
File Edt View Inset Cell Kemel Help # |Python [Root] O
+ 5 BB A9 N EC oo | @ cemobar @ 8 @

Algorithmen und Datenstrukturen

Interaktive Experimente

from numpy and matplotlib

T L7 plot(li 2 (0,1000) *#p))
0ut[7]: [<matplotlib.lines.Line2d at 0x29d3be022e8>]

1000000

#0000

0000

400000

200000

0 W0 w0 0 000

Juypter Notebooks: Heap.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 20 / 28

B5. Heaps und Heapsort

Komplexitat

Theorem

In einer Vorrangwarteschlange mit N Elementen benétigen die
Heap-Algorithmen zum Einfiigen eines neuen Elements nicht mehr
als 1+ log,(N) Vergleiche und zum Entfernen des gréssten
Elements nicht mehr als 2 log,(N) Vergleiche.

Warteschlangen mit Heaps

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 21 / 28
B5. Heaps und Heapsort Heapsort
Ein Sortieralgorithmus
> Gegeben, ein unsortiertes Array der lange N .
> Fiige alle Elemente der Reihe nach in einen Heap ein.
» Entferne N mal das grosste Element und schreibe es zuriick
ins Array.
Komplexitat
Die Prozedur hat garantierte Laufzeitkomplexitdt von O(nlog,(n)).
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 23 / 28

B5. Heaps und Heapsort Heapsort
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 22 /28
B5. Heaps und Heapsort Heapsort
Heapsort
> Idee: Geschicktes verwenden von swim und sink |asst uns
heapsort in-place verwenden.
» Prozedur verlduft in zwei Phasen:
@ Heap Konstruktion (rechts nach Links)
@ Absteigendes Sortieren durch sukkzesives Tauschen von
grosstem Element
def heapsort(a):
N = len(a) -1
for k in range(int(N/2), 0, -1):
sink(a, k)
while N > 1:
al1]l, alN] = al[N], al1]
N o-= 1
sink(a, 1, N)
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 24 / 28

B5. Heaps und Heapsort

B5. Heaps und Heapsort

Heapsort
Heapsort
- @ . ::;EE
O] w ® ® @ © o
(ONORGNG]
ks, 0 e .'a; O B @/D\®
gQ@ @] W ® & (A)/ M
@O ©® x
s 1 T, ‘g“; S . s 3
@© O D ©®® L
& ® ®® T
G sy AR 3O
) 0 0w G ®
™ s
e S B ® e B @
(p O} O] © ®®
HO & ® R
onct, () iiiii Lt
0 O & o gP W w %o e
m@ O] R B s 9s 7 Ly
Ergebnis (Heap-geordnet) s ot
Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 25 / 28
B5. Heaps und Heapsort Heapsort
Bemerkungen
» Heapsort ist theoretisch wichtig:
> Optimal hinsichtlich Zeit und Speichernutzung
> Laufzeit O(nlogn).
» Zusatzlicher Speicher (O(1))
» Praktische Bedeutung eher klein
» Nutzt CPU Cache nicht effizient, da entfernte Elemente
ausgetauscht werden.
» Heaps sind aber fiir Priority Queues sehr wichtig!
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 27 / 28

Heapsort
Implementation
ZJupyter untitled w
File Edit View Inset Cell Kemel Help # | Python [Root] O
B+ x @B 44 % N B C Coe “ & CellToobar & & @
Algorithmen und Datenstrukturen
Interaktive Experimente
(]
Jupyter Notebooks: Heap.ipynb
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 26 / 28
B5. Heaps und Heapsort Heapsort
Zusammenfassung
» Heap-sort Algorithmus von Datenstruktur " getrieben”
» Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen
» Nutzung von Eigenschaften vollstandiger bindre Baume
> Effiziente Implementation mittels Arrays
» Heap Bedingung um grosstes Element zu erhalten
» Verstindnis von Heap ist zentral fiir Algorithmus
» Danach ist Algorithmus einfach zu verstehen
> Laufzeitanalyse trivial
Show me your code and conceal your data structures, and | shall
continue to be mystified. Show me your data structures, and |
won't usually need your code ; it'll be obvious
Fred Brooks
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 28 / 28

	Einführung
	

	Heaps
	

	Warteschlangen mit Heaps
	

	Heapsort
	

