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B5. Heaps und Heapsort Einfiihrung

B5.1 Einfiihrung
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B5. Heaps und Heapsort

Ausblick auf Vorlesung

» Die Datenstruktur Heap
» Heaps zur Implementation von Priorityqueues

» Heapsort
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B5. Heaps und Heapsort Einfiihrung

Informatiker des Tages

» Gewinner Turing Award (1978)

> U.a. fiir Arbeit an Analyse von
Algorithmen

» Entwickler des Treesort
Algorithmus (Vorganger von
Heapsort)

» Verbesserung von Heapsort,
nachdem dieser von J. Williams
entwickelt wurde.

» Auch bekannt fiir: Floyd-Warshall

ﬂ '-"'4 Algorithmus
Robert W. Floyd > Elgc;l:]r;i von kiirzesten Pfaden in

Floyd, R. W. (1979). " The paradigms of programming”.
Communications of the ACM. 22 (8).
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B5. Heaps und Heapsort Heaps

B5.2 Heaps
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B5. Heaps und Heapsort

Bijektion - Array / Vollstandiger Bindrbaum

» Jedes Array kann als vollstandiger Bindrbaum interpretiert
werden:

» Linker Teilbaum: Index Wurzel * 2
» Rechter Teilbaum: Index Wurzel * 2 4+ 1
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Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne
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B5. Heaps und Heapsort

Heap

Definition: Heap

Ein bindrer Baum / Array ist Heap geordnet, wenn der Schliissel in
jedem Knoten grosser gleich dem Schliissel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick
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B5. Heaps und Heapsort Heaps

Heap Ordnung

Theorem
Der grésste Schliissel in einem Heap-geordneten Bindrbaum
befindet sich an der Wurzel.

Beweis.
Induktion iiber die Baumgrosse

O
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B5. Heaps und Heapsort Heaps

Binarer Heap

Definition: Bindrer Heap

Ein bindrer Heap ist eine Sammlung von Schliisseln, die in einem
vollstandigen Heap-geordneten Bindarbaum angeordnet sind und in
einem Array ebenenweise reprisentiert werden (das erste Feld des
Arrays wird nicht verwendet).
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B5. Heaps und Heapsort

Binarer Heap
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Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick
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B5. Heaps und Heapsort Warteschlangen mit Heaps

B5.3 Warteschlangen mit Heaps
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Priority Queue ADT

class MaxPQ[Item]:

# Element einfuegen
def insert(k : Item) -> None

# Groesstes Element zurueckgeben
def max() -> Item

# Groesstes Element entfernen und zurueckgeben
def delMax() -> Item

# Ist die Queue leer?
def isEmpty () -> bool

# Anzahl Elemente in der Priority Queue
def size() -> int
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung

Array implementation von Max-heap hat grosstes Element immer
an Stelle 1 .

» Implementation von max ist trivial

Problem: Wir miissen wenn wir beim insert und delMax die
Heapbedingung erfiillen konnen.
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung (2)

> Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...

... ohne dabei explizite Verweise verwalten zu miissen .
» Der Baum hat die Hohe [log,(N)]|

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log,(N))
Operationen nach Entfernen oder Einfiigen eines Elements die
Heapbedingung wiederherstellen.
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Element einfiigen

» Blatt wird an letzter Stelle
. . . infiigen eines
im Array eingefiigt neden Bements

» entspricht Blatt ganz
rechts
» Heap Bedingung wird durch
ausfiihren von swim
wiederhergestellt

_ Hinzufiigen des Schliissels
zum Heap verletzt die
Heap-Ordnung

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation swim

» Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfiillt ist.

» Braucht maximal log,(N) + 1 ® D @ @ vrizt di Henp-Ordang
. sel grifier
Vergleu:he_ ul Ilnurl\:zulm‘
def swim(a, k): 2(5) ° ®)
while k > 1 and alk/2] < alk]:
alk/2], alk] = alk], alk/2] W) ©@© ®
kK = k/2 oRo)

Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Grosstes Element entfernen

> Wurzel (grosstes Element)
wird entfernt arotten lements (7), — au enferender

Jllu sel
TP 2 'b

& @© © ® _ Schliissel mit
Wurzel tauschen

» Blatt ganz rechts wird an
Wourzel gesetzt

» Heap Bedingung wird durch e
ausfiihren von sink (S ?‘
wiederhergestellt 0 © W

entfernt Kroten
® © © 7"

sinkt nach
unten

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne
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B5. Heaps und Heapsort

Die Operation sink

» Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfiillt ist.

» Element wird mit grosserem Kind

vertauscht.
» Braucht maximal 2log,(N)
Vergleiche.
def sink(a, k):
while 2 * k <= len(a):
j =2k
if j < len(a) and alj]l < alj+1]:
j +=1
if not alk] < aljl:
break
aljl, alk]l] = alk], aljl
k=3

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

Warteschlangen mit Heaps

verletzt die Heap-Ordnung
(kleiner als ein Kindknoten)

Quelle: Abbiludung 2.29: Algorithmen,
Sedgewick & Wayne
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B5. Heaps und Heapsort

Implementation

Warteschlangen mit Heaps

ZJupyter untitied wemen

File  Edt View Inset Cell Kemel Help # |Python Rootl O

B+ @B AV M EC Cxe @ Cellobar & & B

Algorithmen und Datenstrukturen

Interaktive Experimente

: spylab inline

Papulating the intaractive namespace from mumpy and matplotlib

Tn [7]: | plot (linspace (0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]
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Juypter Notebooks: Heap.ipynb
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Komplexitat

Theorem

In einer Vorrangwarteschlange mit N Elementen benétigen die
Heap-Algorithmen zum Einfiigen eines neuen Elements nicht mehr
als 1 + logy(N) Vergleiche und zum Entfernen des gréssten
Elements nicht mehr als 2log,(N) Vergleiche.
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B5. Heaps und Heapsort Heapsort

B5.4 Heapsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 22 /28



B5. Heaps und Heapsort Heapsort

Ein Sortieralgorithmus

> Gegeben, ein unsortiertes Array der lange N .
P Fiige alle Elemente der Reihe nach in einen Heap ein.

» Entferne N mal das grdsste Element und schreibe es zuriick
ins Array.

Komplexitat
Die Prozedur hat garantierte Laufzeitkomplexitat von O(nlog,(n)).
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B5. Heaps und Heapsort

Heapsort

Heapsort

» Idee: Geschicktes verwenden von swim und sink l3sst uns

heapsort in-place verwenden.
» Prozedur verlauft in zwei Phasen:

@ Heap Konstruktion (rechts nach Links)

@ Absteigendes Sortieren durch sukkzesives Tauschen von

grosstem Element

def heapsort(a):
N = len(a) -1

for k in range(int(N/2), 0, -1):

sink(a, k)
while N > 1:
al[1]l, alN] = al[N], al1]
N -=1
sink(a, 1, N)
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B5. Heaps und Heapsort
Heapsort

Heap-Konstruktion

Ausgangsbasis (beliebige Ordnung)

sink(s, 11)
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abstelgend Sortieren
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Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick
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B5. Heaps und Heapsort

Implementation

Heapsort

ZJupyter untitied wemen

File  Edt View Inset Cell Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

: spylab inline

Papulating the intaractive namespace from mumpy and matplotlib

Tn [7]: | plot (linspace (0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]
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Jupyter Notebooks: Heap.ipynb
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B5. Heaps und Heapsort Heapsort

Bemerkungen

» Heapsort ist theoretisch wichtig:

» Optimal hinsichtlich Zeit und Speichernutzung
> Laufzeit O(nlog n).
» Zusatzlicher Speicher (O(1))

P> Praktische Bedeutung eher klein

» Nutzt CPU Cache nicht effizient, da entfernte Elemente
ausgetauscht werden.

» Heaps sind aber fiir Priority Queues sehr wichtig!
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B5. Heaps und Heapsort Heapsort

Zusammenfassung

» Heap-sort Algorithmus von Datenstruktur " getrieben”
> Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen

» Nutzung von Eigenschaften vollstandiger bindre Baume
» Effiziente Implementation mittels Arrays
» Heap Bedingung um grosstes Element zu erhalten

» Verstdndnis von Heap ist zentral fiir Algorithmus

» Danach ist Algorithmus einfach zu verstehen
» Laufzeitanalyse trivial

Show me your code and conceal your data structures, and | shall
continue to be mystified. Show me your data structures, and |
won't usually need your code ; it'll be obvious

Fred Brooks
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