
Algorithmen und Datenstrukturen
B5. Heaps und Heapsort
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B5. Heaps und Heapsort Einführung

B5.1 Einführung
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B5. Heaps und Heapsort Einführung

Ausblick auf Vorlesung

I Die Datenstruktur Heap

I Heaps zur Implementation von Priorityqueues

I Heapsort
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B5. Heaps und Heapsort Einführung

Informatiker des Tages

Robert W. Floyd

I Gewinner Turing Award (1978)
I U.a. für Arbeit an Analyse von

Algorithmen

I Entwickler des Treesort
Algorithmus (Vorgänger von
Heapsort)
I Verbesserung von Heapsort,

nachdem dieser von J. Williams
entwickelt wurde.

I Auch bekannt für: Floyd-Warshall
Algorithmus
I Findung von kürzesten Pfaden in

Graphen.

Floyd, R. W. (1979). ”The paradigms of programming”.
Communications of the ACM. 22 (8).
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B5. Heaps und Heapsort Heaps

B5.2 Heaps
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B5. Heaps und Heapsort Heaps

Bijektion - Array / Vollständiger Binärbaum

I Jedes Array kann als vollständiger Binärbaum interpretiert
werden:
I Linker Teilbaum: Index Wurzel * 2
I Rechter Teilbaum: Index Wurzel * 2 + 1

Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne
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B5. Heaps und Heapsort Heaps

Heap

Definition: Heap

Ein binärer Baum / Array ist Heap geordnet, wenn der Schlüssel in
jedem Knoten grösser gleich dem Schlüssel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick
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B5. Heaps und Heapsort Heaps

Heap Ordnung

Theorem
Der grösste Schlüssel in einem Heap-geordneten Binärbaum
befindet sich an der Wurzel.

Beweis.
Induktion über die Baumgrösse
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B5. Heaps und Heapsort Heaps

Binärer Heap

Definition: Binärer Heap

Ein binärer Heap ist eine Sammlung von Schlüsseln, die in einem
vollständigen Heap-geordneten Binärbaum angeordnet sind und in
einem Array ebenenweise repräsentiert werden (das erste Feld des
Arrays wird nicht verwendet).
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B5. Heaps und Heapsort Heaps

Binärer Heap

Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick
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B5. Heaps und Heapsort Warteschlangen mit Heaps

B5.3 Warteschlangen mit Heaps
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Priority Queue ADT

class MaxPQ[Item]:

# Element einfuegen

def insert(k : Item) -> None

# Groesstes Element zurueckgeben

def max() -> Item

# Groesstes Element entfernen und zurueckgeben

def delMax () -> Item

# Ist die Queue leer?

def isEmpty () -> bool

# Anzahl Elemente in der Priority Queue

def size() -> int
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung

Array implementation von Max-heap hat grösstes Element immer
an Stelle 1 .

I Implementation von max ist trivial

Problem: Wir müssen wenn wir beim insert und delMax die
Heapbedingung erfüllen können.
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung (2)

I Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...
... ohne dabei explizite Verweise verwalten zu müssen .

I Der Baum hat die Höhe blog2(N)c

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log2(N))
Operationen nach Entfernen oder Einfügen eines Elements die
Heapbedingung wiederherstellen.
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Element einfügen

I Blatt wird an letzter Stelle
im Array eingefügt
I entspricht Blatt ganz

rechts

I Heap Bedingung wird durch
ausführen von swim

wiederhergestellt

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation swim

I Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfüllt ist.

I Braucht maximal log2(N) + 1
Vergleiche.

def swim(a, k):

while k > 1 and a[k/2] < a[k]:

a[k/2], a[k] = a[k], a[k/2]

k = k/2

Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Grösstes Element entfernen

I Wurzel (grösstes Element)
wird entfernt

I Blatt ganz rechts wird an
Wurzel gesetzt

I Heap Bedingung wird durch
ausführen von sink

wiederhergestellt

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation sink

I Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfüllt ist.

I Element wird mit grösserem Kind
vertauscht.

I Braucht maximal 2 log2(N)
Vergleiche.

def sink(a, k):

while 2 * k <= len(a):

j = 2 * k

if j < len(a) and a[j] < a[j+1]:

j += 1

if not a[k] < a[j]:

break

a[j], a[k] = a[k], a[j]

k = j

Quelle: Abbiludung 2.29: Algorithmen,
Sedgewick & Wayne
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Implementation

Juypter Notebooks: Heap.ipynb
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B5. Heaps und Heapsort Warteschlangen mit Heaps

Komplexität

Theorem
In einer Vorrangwarteschlange mit N Elementen benötigen die
Heap-Algorithmen zum Einfügen eines neuen Elements nicht mehr
als 1 + log2(N) Vergleiche und zum Entfernen des grössten
Elements nicht mehr als 2 log2(N) Vergleiche.
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B5. Heaps und Heapsort Heapsort

B5.4 Heapsort
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B5. Heaps und Heapsort Heapsort

Ein Sortieralgorithmus

I Gegeben, ein unsortiertes Array der länge N .

I Füge alle Elemente der Reihe nach in einen Heap ein.

I Entferne N mal das grösste Element und schreibe es zurück
ins Array.

Komplexität

Die Prozedur hat garantierte Laufzeitkomplexität von O(n log2(n)).
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B5. Heaps und Heapsort Heapsort

Heapsort

I Idee: Geschicktes verwenden von swim und sink lässt uns
heapsort in-place verwenden.

I Prozedur verläuft in zwei Phasen:
1 Heap Konstruktion (rechts nach Links)
2 Absteigendes Sortieren durch sukkzesives Tauschen von

grösstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), 0, -1):

sink(a, k)

while N > 1:

a[1], a[N] = a[N], a[1]

N -= 1

sink(a, 1, N)
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B5. Heaps und Heapsort Heapsort

Heapsort

Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick
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B5. Heaps und Heapsort Heapsort

Implementation

Jupyter Notebooks: Heap.ipynb
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B5. Heaps und Heapsort Heapsort

Bemerkungen

I Heapsort ist theoretisch wichtig:
I Optimal hinsichtlich Zeit und Speichernutzung
I Laufzeit O(n log n).
I Zusätzlicher Speicher (O(1))

I Praktische Bedeutung eher klein
I Nutzt CPU Cache nicht effizient, da entfernte Elemente

ausgetauscht werden.

I Heaps sind aber für Priority Queues sehr wichtig!
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B5. Heaps und Heapsort Heapsort

Zusammenfassung

I Heap-sort Algorithmus von Datenstruktur ”getrieben”
I Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen

I Nutzung von Eigenschaften vollständiger binäre Bäume
I Effiziente Implementation mittels Arrays
I Heap Bedingung um grösstes Element zu erhalten

I Verständnis von Heap ist zentral für Algorithmus
I Danach ist Algorithmus einfach zu verstehen
I Laufzeitanalyse trivial

Show me your code and conceal your data structures, and I shall
continue to be mystified. Show me your data structures, and I

won’t usually need your code ; it’ll be obvious

Fred Brooks
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