Algorithmen und Datenstrukturen
B5. Heaps und Heapsort

Marcel Liithi and Gabriele Roger

Universitat Basel

28. Marz 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

28. Mirz 2019

1/

Algorithmen und Datenstrukturen
28. Marz 2019 — Bb5. Heaps und Heapsort

B5.1 Einfiihrung
B5.2 Heaps
B5.3 Warteschlangen mit Heaps

B5.4 Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 2 /28

B5. Heaps und Heapsort Einfiihrung

B5.1 Einfiihrung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 3 /28

B5. Heaps und Heapsort

Ausblick auf Vorlesung

» Die Datenstruktur Heap
» Heaps zur Implementation von Priorityqueues

» Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

28. Mirz 2019

Einfiihrung

4/28

B5. Heaps und Heapsort Einfiihrung

Informatiker des Tages

» Gewinner Turing Award (1978)

> U.a. fiir Arbeit an Analyse von
Algorithmen

» Entwickler des Treesort
Algorithmus (Vorganger von
Heapsort)

» Verbesserung von Heapsort,
nachdem dieser von J. Williams
entwickelt wurde.

» Auch bekannt fiir: Floyd-Warshall

ﬂ '-"'4 Algorithmus
Robert W. Floyd > Elgc;l:]r;i von kiirzesten Pfaden in

Floyd, R. W. (1979). " The paradigms of programming”.
Communications of the ACM. 22 (8).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019

5/

28

B5. Heaps und Heapsort Heaps

B5.2 Heaps

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 6 /28

B5. Heaps und Heapsort

Bijektion - Array / Vollstandiger Bindrbaum

» Jedes Array kann als vollstandiger Bindrbaum interpretiert
werden:

» Linker Teilbaum: Index Wurzel * 2
» Rechter Teilbaum: Index Wurzel * 2 4+ 1

5 6 7 8 9
N O A E I

E I H G

Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019

Heaps

7/28

B5. Heaps und Heapsort

Heap

Definition: Heap

Ein bindrer Baum / Array ist Heap geordnet, wenn der Schliissel in
jedem Knoten grosser gleich dem Schliissel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019

Heaps

8

B5. Heaps und Heapsort Heaps

Heap Ordnung

Theorem
Der grésste Schliissel in einem Heap-geordneten Bindrbaum
befindet sich an der Wurzel.

Beweis.
Induktion iiber die Baumgrosse

O

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 9 /28

B5. Heaps und Heapsort Heaps

Binarer Heap

Definition: Bindrer Heap

Ein bindrer Heap ist eine Sammlung von Schliisseln, die in einem
vollstandigen Heap-geordneten Bindarbaum angeordnet sind und in
einem Array ebenenweise reprisentiert werden (das erste Feld des
Arrays wird nicht verwendet).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 10 / 28

B5. Heaps und Heapsort

Binarer Heap

i 012 3 45 6 7 8 91011
a[il] - T S R P N OAGETHG
T
]
\
m
E I HG

Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019

Heaps

11 /

B5. Heaps und Heapsort Warteschlangen mit Heaps

B5.3 Warteschlangen mit Heaps

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 12 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen
def insert(k : Item) -> None

Groesstes Element zurueckgeben
def max() -> Item

Groesstes Element entfernen und zurueckgeben
def delMax() -> Item

Ist die Queue leer?
def isEmpty () -> bool

Anzahl Elemente in der Priority Queue
def size() -> int

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 13 /28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung

Array implementation von Max-heap hat grosstes Element immer
an Stelle 1 .

» Implementation von max ist trivial

Problem: Wir miissen wenn wir beim insert und delMax die
Heapbedingung erfiillen konnen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 14 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung (2)

> Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...

... ohne dabei explizite Verweise verwalten zu miissen .
» Der Baum hat die Hohe [log,(N)]|

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log,(N))
Operationen nach Entfernen oder Einfiigen eines Elements die
Heapbedingung wiederherstellen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 15 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Element einfiigen

» Blatt wird an letzter Stelle
. . . infiigen eines
im Array eingefiigt neden Bements

» entspricht Blatt ganz
rechts
» Heap Bedingung wird durch
ausfiihren von swim
wiederhergestellt

_ Hinzufiigen des Schliissels
zum Heap verletzt die
Heap-Ordnung

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 16 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation swim

» Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfiillt ist.

» Braucht maximal log,(N) + 1 ® D @ @ vrizt di Henp-Ordang
. sel grifier
Vergleu:he_ ul Ilnurl\:zulm‘
def swim(a, k): 2(5) ° ®)
while k > 1 and alk/2] < alk]:
alk/2], alk] = alk], alk/2] W) ©@© ®
kK = k/2 oRo)

Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 17 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Grosstes Element entfernen

> Wurzel (grosstes Element)
wird entfernt arotten lements (7), — au enferender

Jllu sel
TP 2 'b

& @© © ® _ Schliissel mit
Wurzel tauschen

» Blatt ganz rechts wird an
Wourzel gesetzt

» Heap Bedingung wird durch e
ausfiihren von sink (S ?‘
wiederhergestellt 0 © W

entfernt Kroten
® © © 7"

sinkt nach
unten

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 18 / 28

B5. Heaps und Heapsort

Die Operation sink

» Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfiillt ist.

» Element wird mit grosserem Kind

vertauscht.
» Braucht maximal 2log,(N)
Vergleiche.
def sink(a, k):
while 2 * k <= len(a):
j =2k
if j < len(a) and alj]l < alj+1]:
j +=1
if not alk] < aljl:
break
aljl, alk]l] = alk], aljl
k=3

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

Warteschlangen mit Heaps

verletzt die Heap-Ordnung
(kleiner als ein Kindknoten)

Quelle: Abbiludung 2.29: Algorithmen,
Sedgewick & Wayne

28. Marz 2019 19 /

28

B5. Heaps und Heapsort

Implementation

Warteschlangen mit Heaps

ZJupyter untitied wemen

File Edt View Inset Cell Kemel Help # |Python Rootl O

B+ @B AV M EC Cxe @ Cellobar & & B

Algorithmen und Datenstrukturen

Interaktive Experimente

: spylab inline

Papulating the intaractive namespace from mumpy and matplotlib

Tn [7]: | plot (linspace (0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

Juypter Notebooks: Heap.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 20 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Komplexitat

Theorem

In einer Vorrangwarteschlange mit N Elementen benétigen die
Heap-Algorithmen zum Einfiigen eines neuen Elements nicht mehr
als 1 + logy(N) Vergleiche und zum Entfernen des gréssten
Elements nicht mehr als 2log,(N) Vergleiche.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 21 /28

B5. Heaps und Heapsort Heapsort

B5.4 Heapsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 22 /28

B5. Heaps und Heapsort Heapsort

Ein Sortieralgorithmus

> Gegeben, ein unsortiertes Array der lange N .
P Fiige alle Elemente der Reihe nach in einen Heap ein.

» Entferne N mal das grdsste Element und schreibe es zuriick
ins Array.

Komplexitat
Die Prozedur hat garantierte Laufzeitkomplexitat von O(nlog,(n)).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 23 /28

B5. Heaps und Heapsort

Heapsort

Heapsort

» Idee: Geschicktes verwenden von swim und sink l3sst uns

heapsort in-place verwenden.
» Prozedur verlauft in zwei Phasen:

@ Heap Konstruktion (rechts nach Links)

@ Absteigendes Sortieren durch sukkzesives Tauschen von

grosstem Element

def heapsort(a):
N = len(a) -1

for k in range(int(N/2), 0, -1):

sink(a, k)
while N > 1:
al[1]l, alN] = al[N], al1]
N -=1
sink(a, 1, N)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

28. Marz 2019 24 /28

B5. Heaps und Heapsort
Heapsort

Heap-Konstruktion

Ausgangsbasis (beliebige Ordnung)

sink(s, 11)

&

sink(4, 11)

®
& ®

sink(3, 11)

sink(2, 11)

0
(e3 O}
®Q@ 6 ®

sink(1, 11)

Ergebnis (Heap-geordner)

abstelgend Sortieren

exch(l, 11) exch(l
sink(1, 10) sink(1
S
dw &
®O ©® x
exch(l, 10) exch(l
sink(1, 9) sink(1

exch(l

exch(1, 9) et
sinl

sink(l; 8)

e I N
2
O © ©®6®
R
s B ©
0 (Q@
& o e
N3

exch(1, 6)
sink(l; 5)

()
O G}
® ® o

L

BB
M

. g

E

B ®

L M
o 10q 11y
Ergebnis (sortert)

Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

28. Mirz 2019

Heapsort

25 / 28

B5. Heaps und Heapsort

Implementation

Heapsort

ZJupyter untitied wemen

File Edt View Inset Cell Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

: spylab inline

Papulating the intaractive namespace from mumpy and matplotlib

Tn [7]: | plot (linspace (0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

Jupyter Notebooks: Heap.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Mirz 2019 26 / 28

B5. Heaps und Heapsort Heapsort

Bemerkungen

» Heapsort ist theoretisch wichtig:

» Optimal hinsichtlich Zeit und Speichernutzung
> Laufzeit O(nlog n).
» Zusatzlicher Speicher (O(1))

P> Praktische Bedeutung eher klein

» Nutzt CPU Cache nicht effizient, da entfernte Elemente
ausgetauscht werden.

» Heaps sind aber fiir Priority Queues sehr wichtig!

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 27 / 28

B5. Heaps und Heapsort Heapsort

Zusammenfassung

» Heap-sort Algorithmus von Datenstruktur " getrieben”
> Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen

» Nutzung von Eigenschaften vollstandiger bindre Baume
» Effiziente Implementation mittels Arrays
» Heap Bedingung um grosstes Element zu erhalten

» Verstdndnis von Heap ist zentral fiir Algorithmus

» Danach ist Algorithmus einfach zu verstehen
» Laufzeitanalyse trivial

Show me your code and conceal your data structures, and | shall
continue to be mystified. Show me your data structures, and |
won't usually need your code ; it'll be obvious

Fred Brooks

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 28. Marz 2019 28

	Einführung
	

	Heaps
	

	Warteschlangen mit Heaps
	

	Heapsort
	

