
Algorithmen und Datenstrukturen
B5. Heaps und Heapsort

Marcel Lüthi and Gabriele Röger

Universität Basel

28. März 2019

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 1 / 28

Algorithmen und Datenstrukturen
28. März 2019 — B5. Heaps und Heapsort

B5.1 Einführung

B5.2 Heaps

B5.3 Warteschlangen mit Heaps

B5.4 Heapsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 2 / 28

B5. Heaps und Heapsort Einführung

B5.1 Einführung

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 3 / 28

B5. Heaps und Heapsort Einführung

Ausblick auf Vorlesung

I Die Datenstruktur Heap

I Heaps zur Implementation von Priorityqueues

I Heapsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 4 / 28

B5. Heaps und Heapsort Einführung

Informatiker des Tages

Robert W. Floyd

I Gewinner Turing Award (1978)
I U.a. für Arbeit an Analyse von

Algorithmen

I Entwickler des Treesort
Algorithmus (Vorgänger von
Heapsort)
I Verbesserung von Heapsort,

nachdem dieser von J. Williams
entwickelt wurde.

I Auch bekannt für: Floyd-Warshall
Algorithmus
I Findung von kürzesten Pfaden in

Graphen.

Floyd, R. W. (1979). ”The paradigms of programming”.
Communications of the ACM. 22 (8).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 5 / 28

B5. Heaps und Heapsort Heaps

B5.2 Heaps

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 6 / 28

B5. Heaps und Heapsort Heaps

Bijektion - Array / Vollständiger Binärbaum

I Jedes Array kann als vollständiger Binärbaum interpretiert
werden:
I Linker Teilbaum: Index Wurzel * 2
I Rechter Teilbaum: Index Wurzel * 2 + 1

Quelle: Abbildung 2.26, Algorithms, Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 7 / 28

B5. Heaps und Heapsort Heaps

Heap

Definition: Heap

Ein binärer Baum / Array ist Heap geordnet, wenn der Schlüssel in
jedem Knoten grösser gleich dem Schlüssel seiner beiden Kindern
(sofern vorhanden) ist.

Quelle: Abbildung 2.25, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 8 / 28

B5. Heaps und Heapsort Heaps

Heap Ordnung

Theorem
Der grösste Schlüssel in einem Heap-geordneten Binärbaum
befindet sich an der Wurzel.

Beweis.
Induktion über die Baumgrösse

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 9 / 28

B5. Heaps und Heapsort Heaps

Binärer Heap

Definition: Binärer Heap

Ein binärer Heap ist eine Sammlung von Schlüsseln, die in einem
vollständigen Heap-geordneten Binärbaum angeordnet sind und in
einem Array ebenenweise repräsentiert werden (das erste Feld des
Arrays wird nicht verwendet).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 10 / 28

B5. Heaps und Heapsort Heaps

Binärer Heap

Quelle: Abbildung 2.26, Algorithmen, Wayne & Sedgewick

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 11 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

B5.3 Warteschlangen mit Heaps

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 12 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen

def insert(k : Item) -> None

Groesstes Element zurueckgeben

def max() -> Item

Groesstes Element entfernen und zurueckgeben

def delMax () -> Item

Ist die Queue leer?

def isEmpty () -> bool

Anzahl Elemente in der Priority Queue

def size() -> int

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 13 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung

Array implementation von Max-heap hat grösstes Element immer
an Stelle 1 .

I Implementation von max ist trivial

Problem: Wir müssen wenn wir beim insert und delMax die
Heapbedingung erfüllen können.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 14 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Beobachtung (2)

I Array implementation erlaubt uns in konstanter Zeit zu jedem
Kind den Elternknoten und von jedem Elternknoten alle
Kinder finden ...
... ohne dabei explizite Verweise verwalten zu müssen .

I Der Baum hat die Höhe blog2(N)c

Plan

Durch geschicktes Vertauschen der Eltern/Kinder in O(log2(N))
Operationen nach Entfernen oder Einfügen eines Elements die
Heapbedingung wiederherstellen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 15 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Element einfügen

I Blatt wird an letzter Stelle
im Array eingefügt
I entspricht Blatt ganz

rechts

I Heap Bedingung wird durch
ausführen von swim

wiederhergestellt

Quelle: Abbildung 2.29: Algorithmen, Sedgewick &
Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 16 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation swim

I Knoten an Position k in Array a
schwimmt nach oben bis Heap
Bedingung wieder erfüllt ist.

I Braucht maximal log2(N) + 1
Vergleiche.

def swim(a, k):

while k > 1 and a[k/2] < a[k]:

a[k/2], a[k] = a[k], a[k/2]

k = k/2

Quelle: Abbildung 2.29: Algorithmen,
Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 17 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Grösstes Element entfernen

I Wurzel (grösstes Element)
wird entfernt

I Blatt ganz rechts wird an
Wurzel gesetzt

I Heap Bedingung wird durch
ausführen von sink

wiederhergestellt

Quelle: Abbiludung 2.29: Algorithmen, Sedgewick &
Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 18 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Die Operation sink

I Knoten an Position k in Array a
sinkt nach unten bis Heap
Bedingung wieder erfüllt ist.

I Element wird mit grösserem Kind
vertauscht.

I Braucht maximal 2 log2(N)
Vergleiche.

def sink(a, k):

while 2 * k <= len(a):

j = 2 * k

if j < len(a) and a[j] < a[j+1]:

j += 1

if not a[k] < a[j]:

break

a[j], a[k] = a[k], a[j]

k = j

Quelle: Abbiludung 2.29: Algorithmen,
Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 19 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Implementation

Juypter Notebooks: Heap.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 20 / 28

B5. Heaps und Heapsort Warteschlangen mit Heaps

Komplexität

Theorem
In einer Vorrangwarteschlange mit N Elementen benötigen die
Heap-Algorithmen zum Einfügen eines neuen Elements nicht mehr
als 1 + log2(N) Vergleiche und zum Entfernen des grössten
Elements nicht mehr als 2 log2(N) Vergleiche.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 21 / 28

B5. Heaps und Heapsort Heapsort

B5.4 Heapsort

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 22 / 28

B5. Heaps und Heapsort Heapsort

Ein Sortieralgorithmus

I Gegeben, ein unsortiertes Array der länge N .

I Füge alle Elemente der Reihe nach in einen Heap ein.

I Entferne N mal das grösste Element und schreibe es zurück
ins Array.

Komplexität

Die Prozedur hat garantierte Laufzeitkomplexität von O(n log2(n)).

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 23 / 28

B5. Heaps und Heapsort Heapsort

Heapsort

I Idee: Geschicktes verwenden von swim und sink lässt uns
heapsort in-place verwenden.

I Prozedur verläuft in zwei Phasen:
1 Heap Konstruktion (rechts nach Links)
2 Absteigendes Sortieren durch sukkzesives Tauschen von

grösstem Element

def heapsort(a):

N = len(a) -1

for k in range(int(N/2), 0, -1):

sink(a, k)

while N > 1:

a[1], a[N] = a[N], a[1]

N -= 1

sink(a, 1, N)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 24 / 28

B5. Heaps und Heapsort Heapsort

Heapsort

Quelle: Abbildung 2.31, Algorithmen, Wayne & Sedgewick
M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 25 / 28

B5. Heaps und Heapsort Heapsort

Implementation

Jupyter Notebooks: Heap.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 26 / 28

B5. Heaps und Heapsort Heapsort

Bemerkungen

I Heapsort ist theoretisch wichtig:
I Optimal hinsichtlich Zeit und Speichernutzung
I Laufzeit O(n log n).
I Zusätzlicher Speicher (O(1))

I Praktische Bedeutung eher klein
I Nutzt CPU Cache nicht effizient, da entfernte Elemente

ausgetauscht werden.

I Heaps sind aber für Priority Queues sehr wichtig!

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 27 / 28

B5. Heaps und Heapsort Heapsort

Zusammenfassung

I Heap-sort Algorithmus von Datenstruktur ”getrieben”
I Nutzt nicht triviale Zwischenschritte und Hilfsstrukturen

I Nutzung von Eigenschaften vollständiger binäre Bäume
I Effiziente Implementation mittels Arrays
I Heap Bedingung um grösstes Element zu erhalten

I Verständnis von Heap ist zentral für Algorithmus
I Danach ist Algorithmus einfach zu verstehen
I Laufzeitanalyse trivial

Show me your code and conceal your data structures, and I shall
continue to be mystified. Show me your data structures, and I

won’t usually need your code ; it’ll be obvious

Fred Brooks

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 28. März 2019 28 / 28

	Einführung
	

	Heaps
	

	Warteschlangen mit Heaps
	

	Heapsort
	

