
Algorithmen und Datenstrukturen
B3. ADTs , Bags, Stack and Queues

Marcel Lüthi and Gabriele Röger

Universität Basel

21. März 2019

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 1 / 32

Algorithmen und Datenstrukturen
21. März 2019 — B3. ADTs , Bags, Stack and Queues

B3.1 Abstrakte Datentypen

B3.2 Multimengen, Warteschlange und Stapel

B3.3 Anwendung von Stacks

B3.4 Priority Queues

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 2 / 32

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

B3.1 Abstrakte Datentypen

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 3 / 32

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Abstrakte Datentypen : Definition

Abstrakter Datentyp

Die Beschreibung eines Datentyps durch eine Zusammenfassung
von Daten und anwendbaren Operationen.

Beispiele:

I Integer mit arithmetischen Operationen

I Komplexe Zahlen mit Operationen add und subtract

I Mengen mit Operationen union, intersection und setminus

I Geordnete Sequenz von von Objekten

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 4 / 32

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Informatikerin des Tages

Barbara Liskov

I Eine der ersten Frauen in
USA mit Doktor in
Informatik

I Gewinnering des Turing
Awards

I Hat Konzept von
”
Abstrakt

Data Types “eingeführt.

Liskov, Barbara, and Stephen
Zilles. Programming with
abstract data types. ACM
Sigplan Notices. ACM, 1974.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 5 / 32

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Abstrakte Datentypen und Klassen

I Abstrakte Datentypen entsprechen Klassen in OO
Programmierung

public class Complex {

private double real;

private double imag;

public Complex(double real , double imag) { ... }

public Complex(double magnitude , double phase) { ... }

public Complex add(Complex c1, Complex c2) { ... }

public Complex subtract(Complex c1, Complex c2) { ... }

...

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 6 / 32

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Vorteile von Abstrakten Datentypen

I Nutzer programmiert gegen Schnittstelle
I Verwendete Datenstruktur (Repräsentation) ist versteckt

(gekapselt)
I Repräsentation kann jederzeit ausgetauscht werden

I Verständnis auf zwei Ebenen
1 Was macht der Datentyp (Schnittstelle)
2 Wie wird es gemacht (Interne Datenstruktur)

I Erlaubt komplexe Sachverhalte zu abstrahieren

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 7 / 32

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Beispiel: Listen in Java

interface List <E>:

E get(int index);

void add(E element);

void add(int pos , E element);

...

Achtung

Verschiedene Listen haben dieselbe Schnittstelle, aber Operationen
haben nicht dieselbe Komplexität.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 8 / 32

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Datentypdesign

Wir werden für jeden Datentyp folgende Punkte besprechen

I Beschreiben der Schnittstelle (API)

I Beispielanwendungen (Client) die die Schnittstelle nutzen

I Implementation

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 9 / 32

B3. ADTs , Bags, Stack and Queues Abstrakte Datentypen

Quiz: Abstrakte Datentypen

I Ist eine verkettete Liste ein Datentyp oder eine Datenstruktur?
I Ist ein Array nur eine Datenstruktur oder auch Abstrakter

Datentyp?
I Was wären die Operationen auf einem Array, welche den ADT

Array Charakterisieren?
I Welche Datenstruktur würden Sie für die Implementation eines

Array Datentyps verwenden?

I Was ist die Gefahr, bei der Verwendung eines abstrakten
Datentypen?

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 10 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

B3.2 Multimengen, Warteschlange
und Stapel

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 11 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Ein Besuch in der Mensa

(Teller-)Stapel
Multimenge (von
Essen) Schlange

Stapel, Multimenge und Schlange sind wichtige Datentypen, die
wir vom täglichen Leben kennen.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 12 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Multimengen (Bag)

class Bag[Item]:

Element hinzufuegen

def add(item : Item) -> Item

Ist die Multimenge leer?

def isEmpty () -> bool

Wieviele Elemente sind in der Menge?

def size() -> int

Abstraktion um ueber Elemente zu iterieren

def iterator () -> Iterator[Item]

}

I Anmerkung: Typ Annotation angelehnt an Python Typing
Module (PEP 484)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 13 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Multimenge (bag)

I Undefinierte Reihenfolge der
Elemente
I Welches Element man

nimmt ist undefiniert.
I Aber: Jedes Element wird

nur einmal entnommen

I Nicht zu verwechseln mit
Liste / Array, die die
Reihenfolge garantieren.

Quelle: Abbildung 1.30 - Algorithms,
Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 14 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Warteschlange (Queue)

class Queue[Item] {

Element zu Schlange hinzufuegen

def enqueue(item : Item)

Element von Schlange entfernen

def dequeue () -> Item

Anzahl Elemente in der Schlange

def size() -> int //

Ist die Schlange leer?

def isEmpty () -> bool

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 15 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Warteschlange (queue)

I Reihenfolge: First in - first
out.
I Elemente werden nur von

vorne entnommen
I Elemente werden nur von

hinten hinzugefügt.

I Anwendung:
Zwischenspeicher von
Elementen, ohne dass die
Reihenfolge verändert wird.

Quelle: Abbildung 1.31, Algorithmen,
Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 16 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Stapel (Stack)

class Stack[Item] {

Element zu Stapel hinzufuegen

def push(item : Item)

Element von Stapel entfernen

def pop() -> Item // Element entnehmen

Ist Stapel leer?

def isEmpty () -> Boolean

Anzahl Element in Stapel

def size() -> int

}

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 17 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Stapel (Stack)

I Reihenfolge: last in - first out
(LIFO)
I Jedes element wird oben den

Stapel gelegt.
I Nur oberstes Element kann

entfernt werden.

I Anwendung: Stapeln und
Schachtelung von Dingen
I Verschachtelte Funktionen /

arithmetische Ausdrücke
I E-Mail organisation
I Browser history (back button)

Quelle: Abbildung 1.32,
Algorithmen, Sedgewick & Wayne

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 18 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Multimengen, Warteschlangen und Stapel

I Nichts Neues: Nur Listen mit eingeschränkter Funktionalität

I In Python: Alle Operationen definiert im Datentype List
Siehe: https://docs.python.org/3.1/tutorial/datastructures.html

Einschränkungen helfen Intention und Nutzung klar zu machen und
Fehler in Nutzung zu verhindern.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 19 / 32

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

ADTs in Bibliotheken (Java)

I ADTs sind heute Teil jeder Standardbibliothek

Quelle: By Ramlmn - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=64043967

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 20 / 32

https://docs.python.org/3.1/tutorial/datastructures.html
https://commons.wikimedia.org/w/index.php?curid=64043967

B3. ADTs , Bags, Stack and Queues Multimengen, Warteschlange und Stapel

Beispiele und Implementation

IPython Notebooks: fundamental-adts.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 21 / 32

B3. ADTs , Bags, Stack and Queues Anwendung von Stacks

B3.3 Anwendung von Stacks

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 22 / 32

B3. ADTs , Bags, Stack and Queues Anwendung von Stacks

Auswerten arithmetischer Operationen

Beispiel: (1 + ((2 + 3) ∗ (4 ∗ 5)))

Two-Stack Algorithmus (Dijkstra)

I Wert: push auf Wertestapel

I Operator: push auf
Operatorenstapel

I Linke Klammer: Ignorieren
I Rechte Klammer: pop Operator

und zwei Werte
I Operation auf Werte anwenden
I push Resultat der Operation auf

Wertestapel

Quelle: https://algs4.cs.princeton.edu/
lectures/13StacksAndQueues-2x2.pdf

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 23 / 32

B3. ADTs , Bags, Stack and Queues Anwendung von Stacks

Warum funktioniert das?

Beobachtung:
I Nach Auswertung eines geklammerten Ausdrucks ist der Stack

im selben Zustand wie wenn der Wert anstelle des Ausdrucks
gestanden hätte.
I (1 + ((2 + 3) ∗ (4 ∗ 5))) wird zu (1 + (5 ∗ (4 ∗ 5)))
I (1 + (5 ∗ (4 ∗ 5))) wird zu (1 + (5 ∗ 20)
I (1 + (5 ∗ 20)) wird zu (1 + 100)
I (1 + 100) wird zu 101

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 24 / 32

https://algs4.cs.princeton.edu/lectures/13StacksAndQueues-2x2.pdf
https://algs4.cs.princeton.edu/lectures/13StacksAndQueues-2x2.pdf

B3. ADTs , Bags, Stack and Queues Priority Queues

B3.4 Priority Queues

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 25 / 32

B3. ADTs , Bags, Stack and Queues Priority Queues

Vorrangwarteschlangen (Priority Queue)

Anwendung:

I Grösste Elemente müssen verabeitet werden. Nicht alle auf
einmal.

Beispiele:

I Job-Scheduling (Elemente: Prioritäten von Prozessen)

I Numerische Berechung: (Elemente: Berechnungsfehler, die
zuerst zu beheben sind)

I Simulationssysteme (Elemente (Schlüssel): Ereignisszeiten)

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 26 / 32

B3. ADTs , Bags, Stack and Queues Priority Queues

Priority Queue ADT

class MaxPQ[Item]:

Element einfuegen

def insert(k : Item) -> None

Groesstes Element zurueckgeben

def max() -> Item

Groesstes Element entfernen und zurueckgeben

def delMax () -> Item

Ist die Queue leer?

def isEmpty () -> bool

Anzahl Elemente in der Priority Queue

def size() -> int

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 27 / 32

B3. ADTs , Bags, Stack and Queues Priority Queues

Einfache Implementationen

Arrayrepräsentation
(ungeordnet)

I Insert: Schlüssel zu Array
hinzufügen

I max: Suche grössten
Schlüssel
I - Swap mit letztem

Element
I - Siehe: Selection sort

Arrayrepräsentation
(geordnet)
I Insert: Schlüssel an richtiger

Stelle im Array hinzufügen
I - Siehe: Insertion sort

I max: Letztes Element in
Array zurückgeben.

Datenstruktur Einfügen Grösstes Element entfernen

Ungeordnetes Array 1 N
Geordentes Array N 1

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 28 / 32

B3. ADTs , Bags, Stack and Queues Priority Queues

Beispielclient

Gegeben: Sehr grosser Stream von N Elementen N so gross,
dass Speichern nicht möglich ist.

Gesucht: M grösste Elemente.

Einfachste Implementierungen (Nicht praktikabel)
I Daten werden in Array gespeichert

I Daten werden sortiert und M grösste Elemente zurückgegeben

Bessere Idee
Halte M grösste Elemente in Priority Queue.

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 29 / 32

B3. ADTs , Bags, Stack and Queues Priority Queues

Implementation

IPython Notebooks: PQ.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 30 / 32

B3. ADTs , Bags, Stack and Queues Priority Queues

Komplexität Beispielclient

Implementation Zeit Speicher

Sortier-Client N logN N
PQ (einfache Implementation) NM M

I Grosse Vorteile in Laufzeit und Speicherkomplexität wenn
M � N

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 31 / 32

B3. ADTs , Bags, Stack and Queues Priority Queues

Ausblick: Heaps - Ideale Datenstruktur für Priority Queues

Datenstruktur

Datenstruktur Einfügen Grösstes Element entfernen

Geordentes Array N 1
Ungeordnetes Array 1 N

Heap logN logN

Testclient

Implementation Zeit Speicher

Sortier-Client N logN N
PQ (einfache Implementation) NM M

Heap Implementation N logM M

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 32 / 32

	Abstrakte Datentypen
	

	Multimengen, Warteschlange und Stapel
	

	Anwendung von Stacks
	

	Priority Queues
	

