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M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 1 / 32

Algorithmen und Datenstrukturen
21. März 2019 — B3. ADTs , Bags, Stack and Queues

B3.1 Abstrakte Datentypen

B3.2 Multimengen, Warteschlange und Stapel

B3.3 Anwendung von Stacks

B3.4 Priority Queues
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B3.1 Abstrakte Datentypen
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Abstrakte Datentypen : Definition

Abstrakter Datentyp

Die Beschreibung eines Datentyps durch eine Zusammenfassung
von Daten und anwendbaren Operationen.

Beispiele:

I Integer mit arithmetischen Operationen

I Komplexe Zahlen mit Operationen add und subtract

I Mengen mit Operationen union, intersection und setminus

I Geordnete Sequenz von von Objekten
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Informatikerin des Tages

Barbara Liskov

I Eine der ersten Frauen in
USA mit Doktor in
Informatik

I Gewinnering des Turing
Awards

I Hat Konzept von
”
Abstrakt

Data Types “eingeführt.

Liskov, Barbara, and Stephen
Zilles. Programming with
abstract data types. ACM
Sigplan Notices. ACM, 1974.
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Abstrakte Datentypen und Klassen

I Abstrakte Datentypen entsprechen Klassen in OO
Programmierung

public class Complex {

private double real;

private double imag;

public Complex(double real , double imag) { ... }

public Complex(double magnitude , double phase) { ... }

public Complex add(Complex c1, Complex c2) { ... }

public Complex subtract(Complex c1, Complex c2) { ... }

...

}
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Vorteile von Abstrakten Datentypen

I Nutzer programmiert gegen Schnittstelle
I Verwendete Datenstruktur (Repräsentation) ist versteckt

(gekapselt)
I Repräsentation kann jederzeit ausgetauscht werden

I Verständnis auf zwei Ebenen
1 Was macht der Datentyp (Schnittstelle)
2 Wie wird es gemacht (Interne Datenstruktur)

I Erlaubt komplexe Sachverhalte zu abstrahieren
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Beispiel: Listen in Java

interface List <E>:

E get(int index);

void add(E element );

void add(int pos , E element );

...

Achtung

Verschiedene Listen haben dieselbe Schnittstelle, aber Operationen
haben nicht dieselbe Komplexität.
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Datentypdesign

Wir werden für jeden Datentyp folgende Punkte besprechen

I Beschreiben der Schnittstelle (API)

I Beispielanwendungen (Client) die die Schnittstelle nutzen

I Implementation
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Quiz: Abstrakte Datentypen

I Ist eine verkettete Liste ein Datentyp oder eine Datenstruktur?
I Ist ein Array nur eine Datenstruktur oder auch Abstrakter

Datentyp?
I Was wären die Operationen auf einem Array, welche den ADT

Array Charakterisieren?
I Welche Datenstruktur würden Sie für die Implementation eines

Array Datentyps verwenden?

I Was ist die Gefahr, bei der Verwendung eines abstrakten
Datentypen?
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B3.2 Multimengen, Warteschlange
und Stapel
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Ein Besuch in der Mensa

(Teller-)Stapel
Multimenge (von
Essen) Schlange

Stapel, Multimenge und Schlange sind wichtige Datentypen, die
wir vom täglichen Leben kennen.
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Multimengen (Bag)

class Bag[Item]:

# Element hinzufuegen

def add(item : Item) -> Item

# Ist die Multimenge leer?

def isEmpty () -> bool

# Wieviele Elemente sind in der Menge?

def size() -> int

# Abstraktion um ueber Elemente zu iterieren

def iterator () -> Iterator[Item]

}

I Anmerkung: Typ Annotation angelehnt an Python Typing
Module (PEP 484)
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Multimenge (bag)

I Undefinierte Reihenfolge der
Elemente
I Welches Element man

nimmt ist undefiniert.
I Aber: Jedes Element wird

nur einmal entnommen

I Nicht zu verwechseln mit
Liste / Array, die die
Reihenfolge garantieren.

Quelle: Abbildung 1.30 - Algorithms,
Sedgewick & Wayne
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Warteschlange (Queue)

class Queue[Item] {

# Element zu Schlange hinzufuegen

def enqueue(item : Item)

# Element von Schlange entfernen

def dequeue () -> Item

# Anzahl Elemente in der Schlange

def size() -> int //

# Ist die Schlange leer?

def isEmpty () -> bool

}
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Warteschlange (queue)

I Reihenfolge: First in - first
out.
I Elemente werden nur von

vorne entnommen
I Elemente werden nur von

hinten hinzugefügt.

I Anwendung:
Zwischenspeicher von
Elementen, ohne dass die
Reihenfolge verändert wird.

Quelle: Abbildung 1.31, Algorithmen,
Sedgewick & Wayne
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Stapel (Stack)

class Stack[Item] {

# Element zu Stapel hinzufuegen

def push(item : Item)

# Element von Stapel entfernen

def pop() -> Item // Element entnehmen

# Ist Stapel leer?

def isEmpty () -> Boolean

# Anzahl Element in Stapel

def size() -> int

}
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Stapel (Stack)

I Reihenfolge: last in - first out
(LIFO)
I Jedes element wird oben den

Stapel gelegt.
I Nur oberstes Element kann

entfernt werden.

I Anwendung: Stapeln und
Schachtelung von Dingen
I Verschachtelte Funktionen /

arithmetische Ausdrücke
I E-Mail organisation
I Browser history (back button)

Quelle: Abbildung 1.32,
Algorithmen, Sedgewick & Wayne
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Multimengen, Warteschlangen und Stapel

I Nichts Neues: Nur Listen mit eingeschränkter Funktionalität

I In Python: Alle Operationen definiert im Datentype List
Siehe: https://docs.python.org/3.1/tutorial/datastructures.html

Einschränkungen helfen Intention und Nutzung klar zu machen und
Fehler in Nutzung zu verhindern.
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ADTs in Bibliotheken (Java)

I ADTs sind heute Teil jeder Standardbibliothek

Quelle: By Ramlmn - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=64043967
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Beispiele und Implementation

IPython Notebooks: fundamental-adts.ipynb

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 21 / 32

B3. ADTs , Bags, Stack and Queues Anwendung von Stacks

B3.3 Anwendung von Stacks

M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 21. März 2019 22 / 32

B3. ADTs , Bags, Stack and Queues Anwendung von Stacks

Auswerten arithmetischer Operationen

Beispiel: (1 + ((2 + 3) ∗ (4 ∗ 5)))

Two-Stack Algorithmus (Dijkstra)

I Wert: push auf Wertestapel

I Operator: push auf
Operatorenstapel

I Linke Klammer: Ignorieren
I Rechte Klammer: pop Operator

und zwei Werte
I Operation auf Werte anwenden
I push Resultat der Operation auf

Wertestapel

Quelle: https://algs4.cs.princeton.edu/
lectures/13StacksAndQueues-2x2.pdf
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Warum funktioniert das?

Beobachtung:
I Nach Auswertung eines geklammerten Ausdrucks ist der Stack

im selben Zustand wie wenn der Wert anstelle des Ausdrucks
gestanden hätte.
I (1 + ((2 + 3) ∗ (4 ∗ 5))) wird zu (1 + (5 ∗ (4 ∗ 5)))
I (1 + (5 ∗ (4 ∗ 5))) wird zu (1 + (5 ∗ 20)
I (1 + (5 ∗ 20)) wird zu (1 + 100)
I (1 + 100) wird zu 101
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B3.4 Priority Queues
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Vorrangwarteschlangen (Priority Queue)

Anwendung:

I Grösste Elemente müssen verabeitet werden. Nicht alle auf
einmal.

Beispiele:

I Job-Scheduling (Elemente: Prioritäten von Prozessen)

I Numerische Berechung: (Elemente: Berechnungsfehler, die
zuerst zu beheben sind)

I Simulationssysteme (Elemente (Schlüssel): Ereignisszeiten)
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Priority Queue ADT

class MaxPQ[Item]:

# Element einfuegen

def insert(k : Item) -> None

# Groesstes Element zurueckgeben

def max() -> Item

# Groesstes Element entfernen und zurueckgeben

def delMax () -> Item

# Ist die Queue leer?

def isEmpty () -> bool

# Anzahl Elemente in der Priority Queue

def size() -> int
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Einfache Implementationen

Arrayrepräsentation
(ungeordnet)

I Insert: Schlüssel zu Array
hinzufügen

I max: Suche grössten
Schlüssel
I - Swap mit letztem

Element
I - Siehe: Selection sort

Arrayrepräsentation
(geordnet)
I Insert: Schlüssel an richtiger

Stelle im Array hinzufügen
I - Siehe: Insertion sort

I max: Letztes Element in
Array zurückgeben.

Datenstruktur Einfügen Grösstes Element entfernen

Ungeordnetes Array 1 N
Geordentes Array N 1
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Beispielclient

Gegeben: Sehr grosser Stream von N Elementen N so gross,
dass Speichern nicht möglich ist.

Gesucht: M grösste Elemente.

Einfachste Implementierungen (Nicht praktikabel)
I Daten werden in Array gespeichert

I Daten werden sortiert und M grösste Elemente zurückgegeben

Bessere Idee
Halte M grösste Elemente in Priority Queue.
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Implementation

IPython Notebooks: PQ.ipynb
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Komplexität Beispielclient

Implementation Zeit Speicher

Sortier-Client N logN N
PQ (einfache Implementation) NM M

I Grosse Vorteile in Laufzeit und Speicherkomplexität wenn
M � N
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Ausblick: Heaps - Ideale Datenstruktur für Priority Queues

Datenstruktur

Datenstruktur Einfügen Grösstes Element entfernen

Geordentes Array N 1
Ungeordnetes Array 1 N

Heap logN logN

Testclient

Implementation Zeit Speicher

Sortier-Client N logN N
PQ (einfache Implementation) NM M

Heap Implementation N logM M
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