
Algorithmen und Datenstrukturen
B2. Arrays & Verkettete Listen

Marcel Lüthi and Gabriele Röger

Universität Basel

20. März 2019



Arrays Verkettete Listen

Arrays



Arrays Verkettete Listen

Die Datenstruktur Array (Feld)

Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

Beschreibt eine Kollektion von fixer Grösse.

In Java:
Byte[] ia = new Byte [100];

String [] sa = new String [100];



Arrays Verkettete Listen

Die Datenstruktur Array (Feld)

Array

Sequenz von Elementen die in gleichmässigen Abständen im
Speicher angeordent sind.



Arrays Verkettete Listen

Laufzeit grundlegender Operationen

Was ist die Laufzeitkomplexität von folgenden Operationen
(als Funktion der Arraygrösse n)

get(i) Element an beliebiger Stelle i lesen?
set(i) - Element an beliebiger Stelle i schreiben?
length() - Länge von Array bestimmen?
find(x) - Element x finden und Index zurückliefern?

Was ist die Speicherkomplexität?

Beobachtung

Komplexität direkte Konsequenz aus der Datenrepräsentation



Arrays Verkettete Listen

Laufzeit grundlegender Operationen

Was ist die Laufzeitkomplexität von folgenden Operationen
(als Funktion der Arraygrösse n)

get(i) Element an beliebiger Stelle i lesen?
set(i) - Element an beliebiger Stelle i schreiben?
length() - Länge von Array bestimmen?
find(x) - Element x finden und Index zurückliefern?

Was ist die Speicherkomplexität?

Beobachtung

Komplexität direkte Konsequenz aus der Datenrepräsentation



Arrays Verkettete Listen

Dynamische Arrays

Fixe Grösse ist für viele Anwendungen einschränkend

Brauchen Arrays, die dynamisch wachsen können.

Laufzeit Eigenschaften bestehender Methoden sollen gleich
bleiben.

Zusätzliche Funktionen

append(x) (manchmal push) - Element x ans Ende anfügen

insert(i, x) - Element x an Stelle i einfügen

pop() - letztes Element entfernen

remove(i) - Element an position i löschen

Was ist die Laufzeitkomplexität dieser Funktionen?



Arrays Verkettete Listen

Empirische Laufzeitanalyse, Python Arrays

IPython Notebook: Arrays-und-linked-lists.ipynb



Arrays Verkettete Listen

Arrays vergrössern / verkleinern : Naive Methode

append (und insert) müssen Array vergrössern.

pop muss Array verkleinern

Naive Methode: Jeweils um 1 grösses/kleineres Array anlegen

Element in neues Array kopieren



Arrays Verkettete Listen

Arrays vergrössern : Schlauere Methode

append (und insert) müssen Array vergrössern.

Grösseres Array (von 2n Elementen) anlegen.

Array muss nur bei jeden n-ten Aufruf von append kopiert
werden.



Arrays Verkettete Listen

Arrays verkleinern : Schlauere Methode

pop muss Array verkleinern

Kleineres Array anlegen nur wenn Array zu n/4 gefüllt.

In neues Array der Grösse n/2 kopieren.

Array muss nur bei jeden n/4-ten Aufruf von pop kopiert
werden.



Arrays Verkettete Listen

Implementation: Arrays vergrössern / verkleinern (1)

Implementation der append und pop Methode.

class Array:

_data = [None] # list simulates block of memory

_lastIdx = 0

def append(self , elem):

if len(self._data) == self._lastIdx:

self._resize(len(self._data) * 2)

self._data[self._lastIdx] = elem

self._lastIdx += 1

def pop(self , elem):

self._lastIdx -= 1

item = self._data[self._lastIdx ];

if self._lastIdx > 0

and self._lastIdx == len(self._data) / 4:

self._resize(int(len(self._data) / 2));

return item;



Arrays Verkettete Listen

Implementation: Arrays vergrössern /verkleinern (2)

class Array:

_data = [None] # list simulates block of memory

_lastIdx = 0

def append(self , elem):

...

def pop(self , elem):

...

def _resize(self , numElements ):

newArray = [None] * numElements

for i in range(0, self._lastIdx ):

newArray[i] = self._data[i]

self._data = newArray



Arrays Verkettete Listen

Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1)

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
über Seqenz von N Operationen (im worst case) ermittelt.



Arrays Verkettete Listen

Amortisierte Analyse

IPython Notebook: Arrays-und-linked-lists.ipynb



Arrays Verkettete Listen

Analyse der append Operation: Beweisskizze

Annahmen:

N ist Zweierpotenz.

Wir starten mit Array der Grösse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N + 4 + 8 + 16 + . . . + N + 2N

Wir nutzen, dass
∑n

i=0 2i = 2n+1 − 1

N + 4 + 8 + 16 + . . . + N + 2N ≤ 3N +
∑log2 N

i=0 2i =
3N + 2(log2 N)+1 − 1 = 3N + 2 · 2log2 N − 1 ≤ 5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen für N Aufrufe)



Arrays Verkettete Listen

Analyse der append Operation: Beweisskizze

Annahmen:

N ist Zweierpotenz.

Wir starten mit Array der Grösse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N + 4 + 8 + 16 + . . . + N + 2N

Wir nutzen, dass
∑n

i=0 2i = 2n+1 − 1

N + 4 + 8 + 16 + . . . + N + 2N ≤ 3N +
∑log2 N

i=0 2i =
3N + 2(log2 N)+1 − 1 = 3N + 2 · 2log2 N − 1 ≤ 5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen für N Aufrufe)



Arrays Verkettete Listen

Analyse der append Operation: Beweisskizze

Annahmen:

N ist Zweierpotenz.

Wir starten mit Array der Grösse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N + 4 + 8 + 16 + . . . + N + 2N

Wir nutzen, dass
∑n

i=0 2i = 2n+1 − 1

N + 4 + 8 + 16 + . . . + N + 2N ≤ 3N +
∑log2 N

i=0 2i =
3N + 2(log2 N)+1 − 1 = 3N + 2 · 2log2 N − 1 ≤ 5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen für N Aufrufe)



Arrays Verkettete Listen

Verkettete Listen



Arrays Verkettete Listen

Informatiker des Tages

Herbert Simon (Ökonom)

Nobelpreisträger und
Gewinner des Turing Awards

Pionier in künstlicher
Intelligenz

”
Erfinder “der verketteten

Liste (im Rahmen der IPL
Sprache).

Newell, Allen, and Fred M.
Tonge. An introduction to
information processing language
V. Communications of the ACM
(1960).



Arrays Verkettete Listen

Motivation

Arrays sind nicht flexibel genug

Brauchen immer grossen, kontinuierlichen Block an Speicher

Einfügen von Elementen an beliebiger Position ist teuer

Lösung muss uns erlauben Elemente im Speicher zu verteilen.



Arrays Verkettete Listen

Frage?

Wie kann man Elemente ordnen die verteilt im Speicher sind?



Arrays Verkettete Listen

Frage?

Wie kann man Elemente ordnen die verteilt im Speicher sind?



Arrays Verkettete Listen

Frage?

Wie kann man Elemente ordnen die verteilt im Speicher sind?



Arrays Verkettete Listen

Verkettete Listen

Wichtige, flexible Datenstruktur

Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger

Ende muss speziell gekennzeichnet werden (häufig null/None).

... oder wir brauchen Referenz auf letztes Element



Arrays Verkettete Listen

Quiz: Komplexität Array / Verkettete Liste

Operation Array Verkettete Liste

Zugriff auf beliebiges Element O(1) O(n)
Einfügen, Löschen am Anfang O(n) O(1)
Einfügen am Ende O(1) (ammortisiert) O(1)
Löschen am Ende O(1) (ammortisiert) O(n)
Einfügen, Löschen in Mitte O(n) O(n)
Verschwendeter Speicher O(1) O(n)

Take-home Message

Verschiedene Datenstrukturen machen verschiedene Trade-offs



Arrays Verkettete Listen

Einfügen am Anfang



Arrays Verkettete Listen

Einfügen am Anfang



Arrays Verkettete Listen

Einfügen am Anfang



Arrays Verkettete Listen

Einfügen am Ende



Arrays Verkettete Listen

Einfügen am Ende



Arrays Verkettete Listen

Einfügen am Ende



Arrays Verkettete Listen

Weitere Operationen

Einfach:

Vom Anfang entfernen

Traversieren

Schwierig:

Vom Ende entfernen

An beliebiger Position
einfügen

An beliebiger Position
entfernen

Element an beliebiger
Position lesen/schreiben

Einfach/Schwierig bezieht sich auf Aufwand und nicht
Implementation.



Arrays Verkettete Listen

Doppelt verkettete Liste

Referenz nicht nur auf Nachfolger, sondern auch
vorhergehendes Element

Macht Entfernen vom Ende günstig.



Arrays Verkettete Listen

Implementation in Python

IPython Notebook: Arrays-und-linked-lists.ipynb



Arrays Verkettete Listen

Rekursive Definition

Eine Liste L ist

die leere Liste

oder ein Element H (Head) gefolgt von einer Liste: H, L



Arrays Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:

head : Item

tail : List[Item]

List(head : Item , tail : List[Item]) # Konstruktor

emptyList = List(None , None)



Arrays Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:

head : Item

tail : List[Item]

List(head : Item , tail : List[Item]) # Konstruktor

emptyList = List(None , None)

Vergleiche:

class Node[Item]:

item : Item

next : Node

Node(head : Item , tail : Node[Item]) # Konstruktor



Arrays Verkettete Listen

Verkettete Listen (rekursiv)

Natürliche, rekursive Implementation vieler Operationen

Implementation folgt Datenstruktur

def printList(list):

if (list == emptyList ):

return ""

else:

return str(list.head) + printList(list.tail)



Arrays Verkettete Listen

Implementation in Python

IPython Notebook: Arrays-und-linked-lists.ipynb


	Arrays
	

	Verkettete Listen
	


