Algorithmen und Datenstrukturen
B2. Arrays & Verkettete Listen

Marcel Liithi and Gabriele Roger
Universitat Basel

20. Marz 2019

Arrays
©0000000000000

Arrays

Arrays

O@000000000000

Die Datenstruktur Array (Feld)

m Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

m Beschreibt eine Kollektion von fixer Grosse.

In Java:

Byte[] ia = new Byte[100];
String[] sa = new Stringl[100];

Arrays

00@00000000000

Die Datenstruktur Array (Feld)

Sequenz von Elementen die in gleichmassigen Abstdnden im
Speicher angeordent sind.

Speicher 0x03e4 0x03e5 0x03e6 0x03ed
adresse >

A

Index

\4

Arrays

000e0000000000

Laufzeit grundlegender Operationen

m Was ist die Laufzeitkomplexitdt von folgenden Operationen
(als Funktion der Arraygrosse n)

get (i) Element an beliebiger Stelle i lesen?

m set (i) - Element an beliebiger Stelle i schreiben?

m length() - Lange von Array bestimmen?

m find(x) - Element x finden und Index zuriickliefern?

m Was ist die Speicherkomplexitit?

Arrays

000e0000000000

Laufzeit grundlegender Operationen

m Was ist die Laufzeitkomplexitdt von folgenden Operationen
(als Funktion der Arraygrosse n)

get (i) Element an beliebiger Stelle i lesen?

m set (i) - Element an beliebiger Stelle i schreiben?

m length() - Lange von Array bestimmen?

m find(x) - Element x finden und Index zuriickliefern?

m Was ist die Speicherkomplexitit?

Beobachtung
Komplexitat direkte Konsequenz aus der Datenreprasentation

Arrays

0O000@000000000

Dynamische Arrays

Fixe Grosse ist fiir viele Anwendungen einschrinkend
m Brauchen Arrays, die dynamisch wachsen konnen.

m Laufzeit Eigenschaften bestehender Methoden sollen gleich
bleiben.

Zusétzliche Funktionen
m append(x) (manchmal push) - Element x ans Ende anfiigen
m insert(i, x) - Element x an Stelle i einfiigen
m pop() - letztes Element entfernen
m remove (i) - Element an position i |6schen

Was ist die Laufzeitkomplexitat dieser Funktionen?

Arrays
00000@00000000

Empirische Laufzeitanalyse, Python Arrays

ZJupyter untitied woses

File Edt View Inset Cel Kemel Help # | Python [Roo] O
B+ x AMB A v HEC|coe - = Celloobar & # O

Algorithmen und Datenstrukturen

Interaktive Experimente

: apylab inline
Papulating the interactive namespace from numpy and matplotlib

In [71: plot(linspace(0, 1000), (linspace(0,1000) **2))
OuL[7]: [<matplotlib.lines.Line2D at 0x29d8be02268>]

1000000

800000

00000

400000

200000

20 %0 EQ W0

IPython Notebook: Arrays-und-linked-lists.ipynb

Arrays V
00000080000000

Arrays vergrossern / verkleinern : Naive Methode

m append (und insert) miissen Array vergrossern.

m pop muss Array verkleinern
m Naive Methode: Jeweils um 1 grosses/kleineres Array anlegen
m Element in neues Array kopieren

Specher Owdes 0oses 0% oo

e

.
s,
nfaf [io] Jw]efi]t]

ndex

\\\ Kopieren

aaaaaaa

.....

Arrays

0000000 e000000

Arrays vergrossern : Schlauere Methode

m append (und insert) miissen Array vergrossern.
m Grosseres Array (von 2n Elementen) anlegen.

m Array muss nur bei jeden n-ten Aufruf von append kopiert
werden.

nnnnnnnnnnnnnnnnnnnnnnnnnn

\\\\\

.

aaaaaaa

.....

Arrays

0O0000000e00000

Arrays verkleinern : Schlauere Methode

m pop muss Array verkleinern

m Kleineres Array anlegen nur wenn Array zu n/4 gefiillt.

m In neues Array der Grosse n/2 kopieren.

m Array muss nur bei jeden n/4-ten Aufruf von pop kopiert
werden.

wwwww

Arrays

000000000 e0000

Implementation: Arrays vergrossern / verkleinern (1)

m Implementation der append und pop Methode.

class Array:
_data = [Nonel # list stimulates block of memory
_lastIdx = 0

def append(self, elem):
if len(self._data) == self._lastIdx:
self._resize(len(self._data) * 2)
self._datalself._lastIdx] = elem
self._lastIdx += 1

def pop(self, elem):
self._lastIdx -= 1
item = self._datal[self._lastIdx];
if self._lastIdx > O
and self._lastIdx == len(self._data) / 4:
self. _resize(int(len(self._data) / 2));

return item;

Arrays
0000000000e000

Implementation: Arrays vergrossern /verkleinern (2)

class Array:
_data = [None] # list simulates block
_lastIdx = 0O
def append(self, elem):
def pop(self, elem):
def _resize(self, numElements):
newArray = [Nonel * numElements
for i in range(O,

newArray [i]
self._data =

self._lastIdx):
self._datal[il]

newArray

of

memory

Arrays

00000000000 e00

Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1) J
256 —
2
E
5 ein grauer Punkt 128
2 | fiir jede Operation
g
= 64
e / rote Punkte fiir den
2 . kumulativen Durchschnitt
< \
0 v |

Anzahl append Operationen

0 128

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

m Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
iiber Segenz von N Operationen (im worst case) ermittelt.

Arrays
0000000000000

Amortisierte Analyse

ZJupyter untitied woses

File Edt View Inset Cell Kemel Help

| Python [Roo] O
B+ x BB AV N EC coe

- = Celoobar & @ @

Algorithmen und Datenstrukturen

Interaktive Experimente

: apylab inline
Papulating the interactive namespace from numpy and matplotlib

1n [7]: plot(linspace(0, 1000), (linspace (0

) *%2))
0uL[7]: [<matplotlib.lines.Lie2D at 0x29de

08>]
1000000

800000

00000

400000

200000

20 %0 EQ W0

IPython Notebook: Arrays-und-linked-lists.ipynb

Arrays

0000000000000

Analyse der append Operation: Beweisskizze

Annahmen:
m N ist Zweierpotenz.
m Wir starten mit Array der Grosse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N+4+8+16+...+N+2N

Arrays

0000000000000

Analyse der append Operation: Beweisskizze

Annahmen:
m N ist Zweierpotenz.
m Wir starten mit Array der Grosse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N+4+8+16+...+N+2N

Wir nutzen, dass .7 2/ =21 — 1

N+4+8+16+ +N+2N<3N+Z'°g2 -
3N + 2(og2 N)+1 1 — 3N 4 2.2leeN _ 1 < 5N

Arrays

0000000000000

Analyse der append Operation: Beweisskizze

Annahmen:
m N ist Zweierpotenz.
m Wir starten mit Array der Grosse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N+4+8+16+...+N+2N

Wir nutzen, dass .7 2/ =21 — 1

N+4+8+16+ +N+2N<3N+Z'°g2 -
3N + 2(og2 N)+1 1 — 3N 4 2.2leeN _ 1 < 5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen fiir N Aufrufe) J

Verkettete Listen

900000000000 00000

Verkettete Listen

Verkettete Listen
0®000000000000000

Informatiker des Tages

m Nobelpreistrager und
Gewinner des Turing Awards

m Pionier in kiinstlicher
Intelligenz

m , Erfinder “der verketteten
Liste (im Rahmen der IPL
Sprache).

Newell, Allen, and Fred M.
Tonge. An introduction to
information processing language
V. Communications of the ACM
(1960).

Herbert Simon (Okonom)

Verkettete Listen

00@00000000000000

Motivation

m Arrays sind nicht flexibel genug
m Brauchen immer grossen, kontinuierlichen Block an Speicher

m Einfiigen von Elementen an beliebiger Position ist teuer

Losung muss uns erlauben Elemente im Speicher zu verteilen. J

Verkettete Listen

000@0000000000000

Frage?

m Wie kann man Elemente ordnen die verteilt im Speicher sind?

not

Verkettete Listen

0000@000000000000

Frage?

m Wie kann man Elemente ordnen die verteilt im Speicher sind?

not

Verkettete Listen

0000@000000000000

Frage?

m Wie kann man Elemente ordnen die verteilt im Speicher sind?

first
not

Verkettete Listen
00000@00000000000

Verkettete Listen

m Wichtige, flexible Datenstruktur

m Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger

m Ende muss speziell gekennzeichnet werden (haufig null/None).

m ... oder wir brauchen Referenz auf letztes Element

(la/st)

) o Item1 | 4 Item2 | - .. o~ Itemn i P end
first - next |~ next | next | next |~

Verkettete Listen

000000800000 00000

Quiz: Komplexitat Array / Verkettete Liste

Operation Array Verkettete Liste
Zugriff auf beliebiges Element O(1) O(n)
Einfiigen, Loschen am Anfang O(n) 0o(1)
Einfiigen am Ende O(1) (ammortisiert) O(1)
Loschen am Ende O(1) (ammortisiert) O(n)
Einfiigen, Loschen in Mitte O(n) O(n)
Verschwendeter Speicher 0(1) O(n)

Take-home Message
m Verschiedene Datenstrukturen machen verschiedene Trade-offs

Verkettete Listen

0000000 @000000000

Einfiigen am Anfang

Ausgangssituation

Verkettete Listen

000000 000000000

Einfiigen am Anfang

Ausgangssituation

: next

Neuer Node mit Referenz auf Anfang
newFirst = Node (“not”, first) «end
/

newFirst EESE

~_ -

Verkettete Listen

000000 000000000

Einfiigen am Anfang

Ausgangssituation Ve end

next
Neuer Node mit Referenz auf Anfang
newFirst = Node (“not”, first) «end
newFirst first .
oS next
First Referenz auf neuen Node setzen

first = newFirst 7 end

first

not |- next

Verkettete Listen

000000008000 00000

Einfiigen am Ende

Ausgangssituation

Verkettete Listen

0000000 0000000

Einfiigen am Ende

Ausgangssituation ~—»end

- "~ next
first

last

Neuer Node mit Referenz auf Ende
newlLast = Node (“to”, end)

~_ o
next
newLast

Verkettete Listen

0000000

Einfligen am Ende

Ausgangssituation ——» end

next

first last

Neuer Node mit Referenz auf Ende
newlast = Node (”to”, end)

s next - ’////Hégt
. ~
newLast

First Referenz auf neuen Node setzen
last.next = newLast not

last = newLlast -
= next

first
s next

next . =

0000000

Verkettete Listen

000000000 e0000000

Weitere Operationen

Einfach: Schwierig:
m Vom Anfang entfernen m Vom Ende entfernen
m Traversieren m An beliebiger Position
einfligen

m An beliebiger Position
entfernen

m Element an beliebiger
Position lesen/schreiben

Einfach/Schwierig bezieht sich auf Aufwand und nicht
Implementation. J

Verkettete Listen

0000000000 e000000

Doppelt verkettete Liste

m Referenz nicht nur auf Nachfolger, sondern auch
vorhergehendes Element

m Macht Entfernen vom Ende giinstig.

Y

) . ltem 1 o Item 2 = .+ Itemn)
first = | next \ next \\ next \ next |

prev prev prev prev

end

v €en d

last

Verkettete Listen
00000000000e00000

Implementation in Python

ZJupyter untitied woses

File Edt View Inset Cell Kemel Help

| Python [Roo] O
B+ x BB AV N EC coe

- = Celoobar & @ @

Algorithmen und Datenstrukturen

Interaktive Experimente

: apylab inline
Papulating the interactive namespace from numpy and matplotlib

1n [7]: plot(linspace(0, 1000), (linspace (0

) *%2))
0uL[7]: [<matplotlib.lines.Lie2D at 0x29de

08>]
1000000

800000

00000

400000

200000

20 %0 EQ W0

IPython Notebook: Arrays-und-linked-lists.ipynb

Verkettete Listen
00000000000080000

Rekursive Definition

Eine Liste L ist
m die leere Liste
m oder ein Element H (Head) gefolgt von einer Liste: H, L

Liste

Liste

Head Head

Verkettete Listen

000000000000 0e000

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List(head : Item, tail : List[Item]) # Konstruktor

emptyList = List(None, Nomne)

head1| +head2|
tail | tail

.~ headn L[]
tail ’ tail | ‘

[
Liste

Verkettete Listen

000000000000 00e00

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List(head : Item, tail : List[Item]) # Konstruktor

emptyList = List(None, Nomne)
Vergleiche:

class Node[Item]:
item : Item
next : Node
Node (head : Item, tail : Node[Item]) # Konstruktor

Verkettete Listen
000000000000000e0

Verkettete Listen (rekursiv)

m Natiirliche, rekursive Implementation vieler Operationen

m Implementation folgt Datenstruktur

def printList(list):
if (list == emptyList):
return ""
else:
return str(list.head) + printList(list.tail)

Verkettete Listen
0000000000000000

Implementation in Python

ZJupyter untitied woses

File Edt View Inset Cell Kemel Help

| Python [Roo] O
B+ x BB AV N EC coe

- = Celoobar & @ @

Algorithmen und Datenstrukturen

Interaktive Experimente

: apylab inline
Papulating the interactive namespace from numpy and matplotlib

1n [7]: plot(linspace(0, 1000), (linspace (0

) *%2))
0uL[7]: [<matplotlib.lines.Lie2D at 0x29de

08>]
1000000

800000

00000

400000

200000

20 %0 EQ W0

IPython Notebook: Arrays-und-linked-lists.ipynb

	Arrays
	

	Verkettete Listen
	

