Algorithmen und Datenstrukturen
B2. Arrays & Verkettete Listen

Marcel Liithi and Gabriele Roger
Universitat Basel

20. Marz 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 1/33

Algorithmen und Datenstrukturen
20. Marz 2019 — B2. Arrays & Verkettete Listen

B2.1 Arrays

B2.2 Verkettete Listen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

B2. Arrays & Verkettete Listen Arrays

B2.1 Arrays

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 3/33

B2. Arrays & Verkettete Listen

Die Datenstruktur Array (Feld)

» Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

» Beschreibt eine Kollektion von fixer Grosse.

In Java:

Byte[] ia = new Byte[100];
String[] sa = new String[100];

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

Arrays

B2. Arrays & Verkettete Listen

Arrays B2. Arrays & Verkettete Listen Arrays
Die Datenstruktur Array (Feld) Laufzeit grundlegender Operationen
Array L . . .
. » Was ist die Laufzeitkomplexitdt von folgenden Operationen
Sequenz von Elementen die in gleichméassigen Absténden im . .
Speich | - (als Funktion der Arraygrosse n)
eicher angeordent sind. . o .
P & > get (i) Element an beliebiger Stelle i lesen?
> set (i) - Element an beliebiger Stelle i schreiben?
> length() - Lange von Array bestimmen?
.) , . N
Speicher Oxiod Oe5 G0eb ox03ed » find(x) - Element x finden und Index zuriickliefern?
adresse > » Was ist die Speicherkomplexitit?
h d | | o - | W] € | t Beobachtung
o Komplexitat direkte Konsequenz aus der Datenrepradsentation
naex »
0 1 2 9
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 5 /33 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 6 /33
B2. Arrays & Verkettete Listen Arrays B2. Arrays & Verkettete Listen Arrays
Dynamische Arrays Empirische Laufzeitanalyse, Python Arrays
Fixe Grosse ist fiir viele Anwendungen einschrinkend =JUPYLEr Unttet o B
» Brauchen Arrays, die dynamisch wachsen kénnen. s e
> Laufzeit Eigenschaften bestehender Methoden sollen gleich Algorithmen und Datenstrukturen
b I ei be n. Interaktive Experimente
Zusatzliche Funktionen B P S
> append(x) (manchmal push) - Element x ans Ende anfiigen
> insert(i, x) - Element x an Stelle / einfiigen
» pop() - letztes Element entfernen
» remove(i) - Element an position i [6schen s 8
Was ist die Laufzeitkomplexitat dieser Funktionen? IPython Notebook: Arrays-und-linked-lists.ipynb
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 7 /33 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 8 /33

B2. Arrays & Verkettete Listen

Arrays B2. Arrays & Verkettete Listen Arrays
Arrays vergrossern / verkleinern : Naive Methode Arrays vergrossern @ Schlauere Methode
> append (und insert) miissen Array vergrossern. » append (und insert) miissen Array vergrossern.
> pop muss Array verkleinern » Grosseres Array (von 2n Elementen) anlegen.
» Naive Methode: Jeweils um 1 grosses/kleineres Array anlegen » Array muss nur bei jeden n-ten Aufruf von append kopiert
> Element in neues Array kopieren werden.
BOBnnoEDBnn [nla [folTwle]]t]
Index S n S - S e 0 1 2 \\) 9
T nfaee [[T[T T T 1T
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 9 /33 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 10 / 33
B2. Arrays & Verkettete Listen Arrays B2. Arrays & Verkettete Listen Arrays
Arrays verkleinern : Schlauere Methode Implementation: Arrays vergrossern / verkleinern (1)

» Implementation der append und pop Methode.

» pop muss Array verkleinern

class Array:

> Kleineres Array anlegen nur wenn Array zu n/4 gefiillt. -‘;atalz [N°ge] # list simulates block of memory
_last x =
» In neues Array der Grosse n/2 kopieren.
» Array muss nur bei jeden n/4-ten Aufruf von pop kopiert def append(self, elem):
werden if len(self._data) == self._lastIdx:

self._resize(len(self._data) * 2)
self._datalself._lastIdx] = elem
self._lastIdx += 1

def pop(self, elem):

self._lastIdx -= 1
item = self._datal[self._lastIdx];
h a if self._lastIdx > 0
- and self._lastIdx == len(self._data) / 4:

self. _resize(int(len(self._data) / 2));

return item;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 11 /33

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 12 / 33

B2. Arrays & Verkettete Listen Arrays

Implementation: Arrays vergrossern /verkleinern (2)

class Array:
_data = [Nonel # list simulates block of memory
_lastIdx = 0

def append(self, elem):
def pop(self, elem):

def _resize(self, numElements):
newArray = [None] * numElements
for i in range(0, self._lastIdx):
newArray[i] = self._datal[il]
self._data = newArray

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 13 /33

B2. Arrays & Verkettete Listen

Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1)

256 —

ein grauer Punkt 128
fiir jede Operation /
64
/ rote Punkte fiir den
: kumulativen Durchschnitt

A\

Anzahl append Operationen |

0 128

© Kosten (Arrayverweise,

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

» Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
iiber Seqenz von N Operationen (im worst case) ermittelt.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

Arrays

14 / 33

B2. Arrays & Verkettete Listen Arrays

Amortisierte Analyse

ZJupyter Untited wosmea
File Edt View Inset Cell Kemel Help # | Python [Root] O

B+ 3 @B 4V M EC code | = Celfoobar @& & @

Algorithmen und Datenstrukturen

Interaktive Experimente

Tn [3]: spylab inlina

populating the ce from numpy and matplotlib

T L71: plot(lin:

a0, 1000), (linapace(0,1000) **2))
Out[7): [<matplotlib.lines.Line2D at 0x29d8be022ed>]

1000000

800000

0000

400000

200000

0 w0 &0 0 000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 15 /33

B2. Arrays & Verkettete Listen

Analyse der append Operation: Beweisskizze

Annahmen:
> N ist Zweierpotenz.
» Wir starten mit Array der Grosse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N+4+8+16+...+N+2N

Wir nutzen, dass > 7,2/ =21 — 1

NA+4+8+16+... 4+ N+2N <3N+ 3%V oi =
3N 200gN)+1 1 — 3N 4 2.0leexN _ 1 < 5

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen fiir N Aufrufe)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

Arrays

16 / 33

B2. Arrays & Verkettete Listen Verkettete Listen

B2.2 Verkettete Listen

B2. Arrays & Verkettete Listen

Verkettete Listen

Informatiker des Tages

Herbert Simon (Okonom)

M. Liithi, G. Réger (Universitit Basel)

» Nobelpreistrager und
Gewinner des Turing Awards

» Pionier in kiinstlicher
Intelligenz

» | Erfinder “der verketteten
Liste (im Rahmen der IPL
Sprache).

Newell, Allen, and Fred M.
Tonge. An introduction to
information processing language
V. Communications of the ACM
(1960).

Algorithmen und Datenstrukturen 20. Marz 2019 18 / 33

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 17 / 33
B2. Arrays & Verkettete Listen Verkettete Listen
Motivation

» Arrays sind nicht flexibel genug

» Brauchen immer grossen, kontinuierlichen Block an Speicher

> Einfiigen von Elementen an beliebiger Position ist teuer

Losung muss uns erlauben Elemente im Speicher zu verteilen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 19 / 33

B2. Arrays & Verkettete Listen

Frage?

Verkettete Listen

» Wie kann man Elemente ordnen die verteilt im Speicher sind?

not
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 20 / 33

B2. Arrays & Verkettete Listen

Verkettete Listen B2. Arrays & Verkettete Listen Verkettete Listen
Frage? Verkettete Listen
» Wie kann man Elemente ordnen die verteilt im Speicher sind?
not
> Wichtige, flexible Datenstruktur
» Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger
» Ende muss speziell gekennzeichnet werden (h3ufig null/None).
» ... oder wir brauchen Referenz auf letztes Element
(last)
first /
A - not /
next) o lteml | 4 ltem2 o o ltemn | ~é&n
first next | next | next | next |~
ext ,,f"hext
{ be]
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 21 / 33 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 22 /33
B2. Arrays & Verkettete Listen Verkettete Listen B2. Arrays & Verkettete Listen Verkettete Listen
Quiz: Komplexitat Array / Verkettete Liste Einfligen am Anfang
0 . < end
Ausgangssituation fir;t - — Va
Operation Array Verkettete Liste ~__
" - " next — nex
Zugriff auf beliebiges Element O(1) O(n)
Einfijgen, Ldschen am Anfang O(n) O(l) Neuer Node mit Referenz auf Anfang
. . .. newFirst = Node (“not”, first) end
Einfiigen am Ende O(1) (ammortisiert) O(1) . el
Léschen am Ende O(1) (ammortisiert) O(n) oot | - mext
. o _or |
Einfiigen, Loschen in Mitte O(n) O(n) nex‘t\\-/;lext
Verschwendeter Speicher 0o(1) O(n)
First Referenz auf neuen Node setzen
first = newFirst 7 end
first not
Take-home Message ot next
> Verschiedene Datenstrukturen machen verschiedene Trade-offs neEE e] PexE
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 23 / 33 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 24 / 33

B2. Arrays & Verkettete Listen

Einfligen am Ende

Verkettete Listen

Ausgangssituation ot |- > end
first N — la;t
next\“\/ next
Neuer Node mit Referenz auf Ende
newlLast = Node (“to”, end)
o not | end
_— next ‘ AN
_— N\ to
\ o or] [to]
first o e - - last

_—
ext next ~

newLast

First Referenz auf neuen Node setzen
last.next = newLast

not | end
*
last = newlast » ~— next \ N
first Fesme —— next //
=

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 20. Marz 2019 25 / 33

B2. Arrays & Verkettete Listen

Weitere Operationen

Einfach:

> Vom Anfang entfernen

> Traversieren

Einfach/Schwierig bezieht sich
Implementation.

M. Liithi, G. Réger (Universitit Basel) Algorithmen

Verkettete Listen

Schwierig:
» Vom Ende entfernen

» An beliebiger Position
einfiigen

» An beliebiger Position
entfernen

» Element an beliebiger
Position lesen/schreiben

auf Aufwand und nicht

und Datenstrukturen 20. Marz 2019 26 / 33

B2. Arrays & Verkettete Listen

Doppelt verkettete Liste

» Referenz nicht nur auf Nachfolger, sondern auch

vorhergehendes E
» Macht Entfernen

Verkettete Listen

lement

vom Ende giinstig.

v en d

o Item1 |
next #>\\\\

eng 1 prev

ltem2 ~ .. 4 Itemn j
next ﬁ>\\\\ next R>\\\\ next
prev

prev prev

M. Liithi, G. Réger (Universitit Basel)

last

Algorithmen und Datenstrukturen

20. Marz 2019 27 / 33

B2. Arrays & Verkettete Listen

Implementation in Python

ZJupyter Untited wosmes

File Edt View Inset Cell Kemel

B+ 3 @B 4 ¥ M EC code

Algorithmen und Datenstrukturen

Interaktive Experimente

T L7 plot(li
0ut[7]: [<matplotlib.lines.Line2D at

1000000

Verkettete Listen

Help # | Python [Root] O

J = cemobar & # @

from numpy and matplotlib

2 (0,1000) *#p))

0x29d3be022¢3>]

#0000

0000

400000

200000

0 W0

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

w0 0 000

20. Marz 2019 28 / 33

B2. Arrays & Verkettete Listen

Rekursive Definition

Eine Liste L ist
> die leere Liste
» oder ein Element H (Head) gefolgt von einer Liste: H, L

Liste

Liste

Head Head

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

Verkettete Listen

29 /33

B2. Arrays & Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List(head : Item, tail : List[Item]) # Konstruktor

emptyList = List(None, None)

head 1 head 2 head n - [
@l | [@l | [@i | [al | -
Liste

L Liste J
Liste)

Liste)

|
Liste

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

Verkettete Listen

30 /33

B2. Arrays & Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List(head : Item, tail : List[Item]) # Konstruktor

emptyList = List(None, None)
Vergleiche:

class Node[Item]:
item : Item
next : Node
Node (head : Item, tail : Nodel[Item]) # Konstruktor

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

Verkettete Listen

31/33

B2. Arrays & Verkettete Listen

Verkettete Listen (rekursiv)

» Natiirliche, rekursive Implementation vieler Operationen

» Implementation folgt Datenstruktur

def printList(list):
if (list == emptyList):
return ""
else:
return str(list.head) + printList(list.tail)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

Verkettete Listen

32/33

B2. Arrays & Verkettete Listen

Implementation in Python

ZJupyter untited wosme

File Edit View Inset Cell Kemel Help # | Python [Root] O

B+ % A B 4 v M B C coe | @ ceioobar @& @ @

Algorithmen und Datenstrukturen

Interaktive Experimente
In [3]: pylab inlino

Populaling Lhe inleraclive namespace [rom numpy and malplollib

Tn (715 plot(linspace(0, 1000), (linspace(0,1000) *+2))
¢ [<matplotlib.lines.Line2D al 0x29d8be022e3>]

1000000

#0000

0000

400000

200000

0 w0 %0 0 000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

20. Marz 2019

Verkettete Listen

33 /33

	Arrays
	

	Verkettete Listen
	

