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B2. Arrays & Verkettete Listen

Die Datenstruktur Array (Feld)

» Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

» Beschreibt eine Kollektion von fixer Grosse.

In Java:

Byte[] ia = new Byte[100];
String[] sa = new String[100];
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Arrays B2. Arrays & Verkettete Listen Arrays
Die Datenstruktur Array (Feld) Laufzeit grundlegender Operationen
Array L . . .
. . . . . » Was ist die Laufzeitkomplexitdt von folgenden Operationen
Sequenz von Elementen die in gleichméassigen Absténden im . .
Speich | - (als Funktion der Arraygrosse n)
eicher angeordent sind. . o .
P & > get (i) Element an beliebiger Stelle i lesen?
> set (i) - Element an beliebiger Stelle i schreiben?
> length() - Lange von Array bestimmen?
. ) , . N
Speicher  Oxiod Oe5  G0eb ox03ed » find(x) - Element x finden und Index zuriickliefern?
adresse > » Was ist die Speicherkomplexitit?
h d | | o - | W] € | t Beobachtung
o Komplexitat direkte Konsequenz aus der Datenrepradsentation
naex »
0 1 2 9
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Dynamische Arrays Empirische Laufzeitanalyse, Python Arrays
Fixe Grosse ist fiir viele Anwendungen einschrinkend =JUPYLEr Unttet o B
» Brauchen Arrays, die dynamisch wachsen kénnen. s e
> Laufzeit Eigenschaften bestehender Methoden sollen gleich Algorithmen und Datenstrukturen
b I ei be n. Interaktive Experimente
Zusatzliche Funktionen B P S
> append(x) (manchmal push) - Element x ans Ende anfiigen
> insert(i, x) - Element x an Stelle / einfiigen
» pop() - letztes Element entfernen
» remove(i) - Element an position i [6schen s 8
Was ist die Laufzeitkomplexitat dieser Funktionen? IPython Notebook: Arrays-und-linked-lists.ipynb
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Arrays B2. Arrays & Verkettete Listen Arrays
Arrays vergrossern / verkleinern : Naive Methode Arrays vergrossern @ Schlauere Methode
> append (und insert) miissen Array vergrossern. » append (und insert) miissen Array vergrossern.
> pop muss Array verkleinern » Grosseres Array (von 2n Elementen) anlegen.
» Naive Methode: Jeweils um 1 grosses/kleineres Array anlegen » Array muss nur bei jeden n-ten Aufruf von append kopiert
> Element in neues Array kopieren werden.
BOBnnoEDBnn [nla [ folTwle] ]t]
Index S n S - S e 0 1 2 \\ ) 9
T nfaee [ [ T[T T T 1T
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Arrays verkleinern : Schlauere Methode Implementation: Arrays vergrossern / verkleinern (1)

» Implementation der append und pop Methode.

» pop muss Array verkleinern

class Array:

> Kleineres Array anlegen nur wenn Array zu n/4 gefiillt. -‘;atalz [N°ge] # list simulates block of memory
_last x =
» In neues Array der Grosse n/2 kopieren.
» Array muss nur bei jeden n/4-ten Aufruf von pop kopiert def append(self, elem):
werden if len(self._data) == self._lastIdx:

self._resize(len(self._data) * 2)
self._datalself._lastIdx] = elem
self._lastIdx += 1

def pop(self, elem):

self._lastIdx -= 1
item = self._datal[self._lastIdx];
h a if self._lastIdx > 0
- and self._lastIdx == len(self._data) / 4:

self. _resize(int(len(self._data) / 2));

return item;
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Implementation: Arrays vergrossern /verkleinern (2)

class Array:
_data = [Nonel # list simulates block of memory
_lastIdx = 0

def append(self, elem):
def pop(self, elem):

def _resize(self, numElements ):
newArray = [None] * numElements
for i in range(0, self._lastIdx):
newArray[i] = self._datal[il]
self._data = newArray
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Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1)

256 —

ein grauer Punkt 128
fiir jede Operation /
64
/ rote Punkte fiir den
: kumulativen Durchschnitt

A\

Anzahl append Operationen |

0 128

© Kosten (Arrayverweise,

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

» Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
iiber Seqenz von N Operationen (im worst case) ermittelt.
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Amortisierte Analyse

ZJupyter Untited wosmea
File  Edt View Inset  Cell  Kemel Help # | Python [Root] O

B+ 3 @B 4V M EC code | =  Celfoobar @& & @

Algorithmen und Datenstrukturen

Interaktive Experimente

Tn [3]: spylab inlina

populating the ce from numpy and matplotlib

T L71: plot(lin:

a0, 1000), (linapace(0,1000) **2))
Out[7): [<matplotlib.lines.Line2D at 0x29d8be022ed>]
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IPython Notebook: Arrays-und-linked-lists.ipynb
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Analyse der append Operation: Beweisskizze

Annahmen:
> N ist Zweierpotenz.
» Wir starten mit Array der Grosse 1

Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben
folgende Anzahl Arrayzugriffe

N+4+8+16+...+N+2N

Wir nutzen, dass > 7,2/ =21 — 1

NA+4+8+16+... 4+ N+2N <3N+ 3%V oi =
3N 200gN)+1 1 — 3N 4 2.0leexN _ 1 < 5

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen fiir N Aufrufe)
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B2.2 Verkettete Listen

B2. Arrays & Verkettete Listen

Verkettete Listen

Informatiker des Tages

Herbert Simon (Okonom)

M. Liithi, G. Réger (Universitit Basel)

» Nobelpreistrager und
Gewinner des Turing Awards

» Pionier in kiinstlicher
Intelligenz

» | Erfinder “der verketteten
Liste (im Rahmen der IPL
Sprache).

Newell, Allen, and Fred M.
Tonge. An introduction to
information processing language
V. Communications of the ACM
(1960).
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Motivation

» Arrays sind nicht flexibel genug

» Brauchen immer grossen, kontinuierlichen Block an Speicher

> Einfiigen von Elementen an beliebiger Position ist teuer

Losung muss uns erlauben Elemente im Speicher zu verteilen.
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Frage?

Verkettete Listen

» Wie kann man Elemente ordnen die verteilt im Speicher sind?

not
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Verkettete Listen B2. Arrays & Verkettete Listen Verkettete Listen
Frage? Verkettete Listen
» Wie kann man Elemente ordnen die verteilt im Speicher sind?
not
> Wichtige, flexible Datenstruktur
» Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger
» Ende muss speziell gekennzeichnet werden (h3ufig null/None).
» ... oder wir brauchen Referenz auf letztes Element
(last)
first /
A - not /
next ) o lteml | 4 ltem2 o o ltemn | ~é&n
first next | next | next | next |~
ext ,,f"hext
{ be ]
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Quiz: Komplexitat Array / Verkettete Liste Einfligen am Anfang
0 . < end
Ausgangssituation fir;t - — Va
Operation Array Verkettete Liste ~__
" - " next — nex
Zugriff auf beliebiges Element  O(1) O(n)
Einfijgen, Ldschen am Anfang O(n) O(l) Neuer Node mit Referenz auf Anfang
. . .. newFirst = Node (“not”, first) end
Einfiigen am Ende O(1) (ammortisiert) O(1) . el
Léschen am Ende O(1) (ammortisiert) O(n) oot | - mext
. .. . . . o _or |
Einfiigen, Loschen in Mitte O(n) O(n) nex‘t\\-/;lext
Verschwendeter Speicher 0o(1) O(n)
First Referenz auf neuen Node setzen
first = newFirst 7 end
first not
Take-home Message ot next
> Verschiedene Datenstrukturen machen verschiedene Trade-offs neEE e ] PexE
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Einfligen am Ende

Verkettete Listen

Ausgangssituation ot |- > end
first N — la;t
next\“\/ next
Neuer Node mit Referenz auf Ende
newlLast = Node (“to”, end)
o not | end
_— next ‘ AN
_— N\ to
\ o or ] [ to ]
first o e - - last

_—
ext next ~

newLast

First Referenz auf neuen Node setzen
last.next = newLast

not | end
*
last = newlast » ~— next \ N
first Fesme —— next //
=

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 20. Marz 2019 25 / 33

B2. Arrays & Verkettete Listen

Weitere Operationen

Einfach:

> Vom Anfang entfernen

> Traversieren

Einfach/Schwierig bezieht sich
Implementation.
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Schwierig:
» Vom Ende entfernen

» An beliebiger Position
einfiigen

» An beliebiger Position
entfernen

» Element an beliebiger
Position lesen/schreiben

auf Aufwand und nicht
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Doppelt verkettete Liste

» Referenz nicht nur auf Nachfolger, sondern auch

vorhergehendes E
» Macht Entfernen

Verkettete Listen

lement

vom Ende giinstig.

v en d

o Item1 |
next #>\\\\

eng 1 prev

ltem2 ~ .. 4 Itemn j
next ﬁ>\\\\ next R>\\\\ next
prev

prev prev
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Implementation in Python

ZJupyter Untited wosmes

File  Edt View Inset Cell  Kemel

B+ 3 @B 4 ¥ M EC code
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Interaktive Experimente

T L7 plot(li
0ut[7]: [<matplotlib.lines.Line2D at

1000000

Verkettete Listen

Help # | Python [Root] O

J = cemobar & # @

from numpy and matplotlib

2 (0,1000) *#p))

0x29d3be022¢3>]
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IPython Notebook: Arrays-und-linked-lists.ipynb
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Rekursive Definition

Eine Liste L ist
> die leere Liste
» oder ein Element H (Head) gefolgt von einer Liste: H, L

Liste

Liste

Head Head
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Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List(head : Item, tail : List[Item]) # Konstruktor

emptyList = List(None, None)

head 1 head 2 head n - [
@l | [ @l | [ @i | [al | -
Liste

L Liste J
Liste )

Liste )

|
Liste
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Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List(head : Item, tail : List[Item]) # Konstruktor

emptyList = List(None, None)
Vergleiche:

class Node[Item]:
item : Item
next : Node
Node (head : Item, tail : Nodel[Item]) # Konstruktor
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Verkettete Listen (rekursiv)

» Natiirliche, rekursive Implementation vieler Operationen

» Implementation folgt Datenstruktur

def printList(list):
if (list == emptyList):
return ""
else:
return str(list.head) + printList(list.tail)
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Implementation in Python

ZJupyter untited wosme

File  Edit  View Inset  Cell  Kemel  Help # | Python [Root] O
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Interaktive Experimente
In [3]: pylab inlino

Populaling Lhe inleraclive namespace [rom numpy and malplollib

Tn (715 plot(linspace(0, 1000), (linspace(0,1000) *+2))
¢ [<matplotlib.lines.Line2D al 0x29d8be022e3>]
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