Algorithmen und Datenstrukturen
B2. Arrays & Verkettete Listen

Marcel Liithi and Gabriele Roger

Universitat Basel

20. Marz 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

20. Mirz 2019

1/

Algorithmen und Datenstrukturen
20. Mé&rz 2019 — B2. Arrays & Verkettete Listen

B2.1 Arrays

B2.2 Verkettete Listen

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

20. Mirz 2019

2/33

B2. Arrays & Verkettete Listen Arrays

B2.1 Arrays

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 3 /33

B2. Arrays & Verkettete Listen

Die Datenstruktur Array (Feld)

» Eine der grundlegenden Datenstrukturen, die sich in jeder
Programmiersprache findet.

» Beschreibt eine Kollektion von fixer Grosse.

In Java:

Byte[] ia = new Byte[100];
String[] sa = new Stringl[100];

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019

Arrays

4/

B2. Arrays & Verkettete Listen

Die Datenstruktur Array (Feld)

Arrays

Array

Sequenz von Elementen die in gleichm&ssigen Abstdnden im
Speicher angeordent sind.

Speicher 0x03e4 0x03e5 0x03e6 0x03ed
adresse »
hla |l |l |o wilel|ll |t
e
Index >
0 1 2 9

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 5 /33

B2. Arrays & Verkettete Listen Arrays

Laufzeit grundlegender Operationen

» Was ist die Laufzeitkomplexitdt von folgenden Operationen
(als Funktion der Arraygrosse n)

get (i) Element an beliebiger Stelle i lesen?

> set(i) - Element an beliebiger Stelle i schreiben?

> length() - Linge von Array bestimmen?

> find(x) - Element x finden und Index zuriickliefern?

v

» Was ist die Speicherkomplexitat?

Beobachtung
Komplexitat direkte Konsequenz aus der Datenreprasentation

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 6 /33

B2. Arrays & Verkettete Listen

Dynamische Arrays

Fixe Grosse ist fiir viele Anwendungen einschrinkend
» Brauchen Arrays, die dynamisch wachsen konnen.

> Laufzeit Eigenschaften bestehender Methoden sollen gleich
bleiben.

Zusétzliche Funktionen
» append(x) (manchmal push) - Element x ans Ende anfiigen
> insert(i, x) - Element x an Stelle i einfiigen
» pop() - letztes Element entfernen
» remove (i) - Element an position /i I6schen

Was ist die Laufzeitkomplexitdt dieser Funktionen?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019

7

Arrays

B2. Arrays & Verkettete Listen

Empirische Laufzeitanalyse, Python Arrays

ZJupyter untitied wemen

File Edt View Inset Cell Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

n [7]: | plot (linspace(0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

20. Mirz 2019

Arrays

8 /33

B2. Arrays & Verkettete Listen

Arrays vergrossern / verkleinern : Naive Methode

» append (und insert) missen Array vergrossern.

> pop muss Array verkleinern

» Naive Methode: Jeweils um 1 grosses/kleineres Array anlegen

» Element in neues Array kopieren

Speichor Dx0304_ 00365 0035 Oouned
e ——

[ola[i[ilel Jwlef1]¢]
s
R g B
\\Kopieren
~

a
0024 0025 0utzes 003

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

20. Marz 2019

Arrays

/33

B2. Arrays & Verkettete Listen Arrays

Arrays vergrossern : Schlauere Methode

» append (und insert) missen Array vergrossern.
» Grosseres Array (von 2n Elementen) anlegen.

> Array muss nur bei jeden n-ten Aufruf von append kopiert
werden.

o,
[plol [el wle]r]]

\\\\\\

\\\Ifopieren
T

adresse

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 10 / 33

B2. Arrays & Verkettete Listen Arrays

Arrays verkleinern : Schlauere Methode

» pop muss Array verkleinern
» Kleineres Array anlegen nur wenn Array zu n/4 gefiillt.

» In neues Array der Grosse n/2 kopieren.

> Array muss nur bei jeden n/4-ten Aufruf von pop kopiert
werden.

Speicher 04 00365010365
e

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 11

/33

B2. Arrays & Verkettete Listen

Implementation: Arrays vergrossern / verkleinern (1)

» Implementation der append und pop Methode.

class Array:
_data = [Nomne] # list simulates block of memory
_lastldx = 0

def append(self, elem):
if len(self._data) == self._lastIdx:
self._resize(len(self._data) * 2)
self._datalself._lastIdx] = elem
self._lastIdx += 1

def pop(self, elem):
self._lastIdx -= 1
item = self._datal[self._lastIdx];
if self._lastIdx > O
and self._lastIdx == len(self._data) / 4:
self._resize(int(len(self._data) / 2));

return item;

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019

Arrays

12/

33

B2. Arrays & Verkettete Listen

Implementation: Arrays vergrossern /verkleinern (2)

class Array:
_data = [Nomne] # list simulates block of memory
_lastlIdx = 0

def append(self, elem):
def pop(self, elem):

def _resize(self, numElements):
newArray = [None]l * numElements
for i in range(0, self._lastIdx):
newArray[i] = self._datal[il]
self._data = newArray

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019

Arrays

13 /33

B2. Arrays & Verkettete Listen Arrays

Theoretische Analyse der append Operation

Die append Operation hat (amortisierte) Laufzeit O(1)

256 —

ein grauer Punkt 128

fiir jede Operation /
64
/ rote Punkte fiir den

kumulativen Durchschnitt

Anzahl append Operationen

< Kosten (Arrayverweise)

|

0 128

Quelle: Abbildung 1.28 - Algorithms, Sedgewick & Wayne

» Amortisierte Analyse: Mittlere Laufzeit pro Operation wird
iiber Seqenz von N Operationen (im worst case) ermittelt.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 14 / 33

B2. Arrays & Verkettete Listen

Amortisierte Analyse

ZJupyter untitied wemen

File Edt View Inset Cell Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

n [7]: | plot (linspace(0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

20. Mirz 2019

Arrays

15 / 33

B2. Arrays & Verkettete Listen Arrays

Analyse der append Operation: Beweisskizze

Annahmen:
> N ist Zweierpotenz.
» Wir starten mit Array der Grosse 1
Betrachte N aufeinanderfolgende Aufrufe von append. Wir haben

folgende Anzahl Arrayzugriffe
N+4+8+164+...+N+2N

Wir nutzen, dass Y 7 2/ =21 —1

N44+8+16+...+ N+2N <3N+ 8Noi—
3N + 2(log2 N)+1 _ 1= 3N +2.2leN_1<5N

Beobachtung: Kosten pro Aufruf von append sind konstant
(< 5N Operationen fiir N Aufrufe)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 16 / 33

B2. Arrays & Verkettete Listen Verkettete Listen

B2.2 Verkettete Listen

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 17 / 33

B2. Arrays & Verkettete Listen Verkettete Listen

Informatiker des Tages

» Nobelpreistrager und
Gewinner des Turing Awards

» Pionier in kiinstlicher
Intelligenz

> Erfinder “der verketteten
Liste (im Rahmen der IPL
Sprache).

Newell, Allen, and Fred M.
Tonge. An introduction to
information processing language
V. Communications of the ACM

(1960).

Herbert Simon (Okonom)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 18 / 33

B2. Arrays & Verkettete Listen Verkettete Listen

Motivation

» Arrays sind nicht flexibel genug
» Brauchen immer grossen, kontinuierlichen Block an Speicher

» Einfiigen von Elementen an beliebiger Position ist teuer

Losung muss uns erlauben Elemente im Speicher zu verteilen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 19

33

B2. Arrays & Verkettete Listen Verkettete Listen

Frage?

» Wie kann man Elemente ordnen die verteilt im Speicher sind?

not

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 20 / 33

B2. Arrays & Verkettete Listen Verkettete Listen

Frage?

» Wie kann man Elemente ordnen die verteilt im Speicher sind?

not
-to
first
not

N\

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 21 /33

B2. Arrays & Verkettete Listen

Verkettete Listen

» Wichtige, flexible Datenstruktur

Verkettete Listen

> Jeder Knoten speichert sein Datum, sowie eine Referenz
(Zeiger) auf Nachfolger

» Ende muss speziell gekennzeichnet werden (haufig null/None).

» ... oder wir brauchen Referenz auf letztes Element

first

M. Liithi, G. Réger (Universitit Basel)

(last)

Item 1

Iltem 2

Item n

' . end

next

next

next

next

Algorithmen und Datenstrukturen

20. Marz 2019

22

B2. Arrays & Verkettete Listen

Quiz: Komplexitat Array / Verkettete Liste

Verkettete Listen

Operation Array Verkettete Liste
Zugriff auf beliebiges Element O(1) O(n)
Einfiigen, Loschen am Anfang O(n) 0o(1)
Einfiigen am Ende O(1) (ammortisiert) O(1)
Léschen am Ende O(1) (ammortisiert) O(n)
Einfiigen, Loschen in Mitte O(n) O(n)
Verschwendeter Speicher 0o(1) O(n)

Take-home Message
» Verschiedene Datenstrukturen machen verschiedene Trade-offs

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 23 /33

B2. Arrays & Verkettete Listen Verkettete Listen

Einfligen am Anfang

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 24 / 33

B2. Arrays & Verkettete Listen Verkettete Listen

Einfligen am Ende

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 25 /33

B2. Arrays & Verkettete Listen Verkettete Listen

Weitere Operationen

Einfach: Schwierig:
» Vom Anfang entfernen > Vom Ende entfernen
» Traversieren P> An beliebiger Position
einfligen
> An beliebiger Position
entfernen

P> Element an beliebiger
Position lesen/schreiben

Einfach/Schwierig bezieht sich auf Aufwand und nicht
Implementation.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Marz 2019 26 / 33

B2. Arrays & Verkettete Listen Verkettete Listen

Doppelt verkettete Liste

» Referenz nicht nur auf Nachfolger, sondern auch
vorhergehendes Element

» Macht Entfernen vom Ende giinstig.

v end

) o Item1 A ltem2 A .. W o ltemn |
first - next \ next |~ next : next \

end prev prev prev prev

N\ last

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019

27 /

B2. Arrays & Verkettete Listen

Implementation in Python

Verkettete Listen

ZJupyter untitied wemen

File Edt View Inset Cell Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

n [7]: | plot (linspace(0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

20 %0 EQ %0 000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 28 /33

B2. Arrays & Verkettete Listen

Rekursive Definition

Verkettete Listen

Eine Liste L ist

» die leere Liste

» oder ein Element H (Head) gefolgt von einer Liste: H, L

Head Head

(]

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen

20. Mirz 2019

29 /33

B2. Arrays & Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List(head : Item, tail : List[Item]) # Konstruktor

emptyList = List(None, None)

head1| +head2| .+ .. s headn| ~I[]
tail | tail |~ tail i tail | ‘

Li;,te
L Li‘ste
\ y Li;te
\ I.‘iste

[
Liste

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019

Verkettete Listen

30 /33

B2. Arrays & Verkettete Listen Verkettete Listen

Verkettete Listen: Datenstruktur (rekursiv)

class List[Item]:
head : Item
tail : List[Item]
List(head : Item, tail : List[Item]) # Konstruktor

emptyList = List(None, Nomne)
Vergleiche:

class Node[Item]:
item : Item
next : Node
Node (head : Item, tail : Nodel[Item]) # Konstruktor

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 31 /33

B2. Arrays & Verkettete Listen Verkettete Listen

Verkettete Listen (rekursiv)

» Natiirliche, rekursive Implementation vieler Operationen

» Implementation folgt Datenstruktur

def printList(list):
if (list == emptyList):
return ""
else:
return str(list.head) + printList(list.tail)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 32 /33

B2. Arrays & Verkettete Listen

Implementation in Python

Verkettete Listen

ZJupyter untitied wemen

File Edt View Inset Cell Kemel Help # |Python Rootl O
B+ @B AV M EC Cxe - @ Celfoobar @ @& O

Algorithmen und Datenstrukturen

Interaktive Experimente

: %pylab inline

Papulating the intaractive namespace from mumpy and matplotlib

n [7]: | plot (linspace(0, 1000), (Linspace(0,1000) **2))
Out(7]: [<matplotlib.lines.line2D at 0x28d#bo022c8>]

1000000

800000

00000

00000

200000

20 %0 EQ %0 000

IPython Notebook: Arrays-und-linked-lists.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 20. Mirz 2019 33 /33

	Arrays
	

	Verkettete Listen
	

