Algorithmen und Datenstrukturen
A8. Sortieren IV

Marcel Lithi and Gabriele Roger

Universitat Basel

7. Marz 2019

Sortierverfahren

Vergleichsbasierte
Verfahren

Nicht

_ vergleichsbasierte

Verfahren

Uberblick
[Jele}

Uberblick

Uberblick
[e] e}

Vergleichsbasierte Verfahren: Ubersicht

Algorithmus Laufzeit O(+) Speicherbedarf O(-)
best/avg./worst best/avg./worst

Selectionsort ~ n? 1

Insertionsort ~ n/n?/n? 1

Mergesort nlogn n

Quicksort nlogn/nlogn/n®> logn/logn/n

Heapsort nlogn 1

stabil

nein
ja
ja
nein
nein

https://www.toptal.com/developers/sorting-algorithms/

Uberblick

Vergleichsbasierte Verfahren: Ubersicht

Algorithmus Laufzeit O(+) Speicherbedarf O(-) stabil
best/avg./worst best/avg./worst
Selectionsort ~ n? 1 nein
Insertionsort ~ n/n?/n? 1 ja
Mergesort nlogn n ja
Quicksort nlogn/nlogn/n®> logn/logn/n nein
Heapsort nlogn 1 nein

Sehr schone Visualisierung der Verfahren unter
https://www.toptal.com/developers/sorting-algorithms/

https://www.toptal.com/developers/sorting-algorithms/

Uberblick
[e]e]]

Vergleichsbasierte Verfahren: Bemerkungen

m Insertionsort ist auf kleinen Sequenzen sehr schnell und wird
daher zum Beispiel zur Verbesserung von Mergesort und
Quicksort fiir kurze Aufrufe eingesetzt.

Uberblick
[e]e]]

Vergleichsbasierte Verfahren: Bemerkungen

m Insertionsort ist auf kleinen Sequenzen sehr schnell und wird
daher zum Beispiel zur Verbesserung von Mergesort und
Quicksort fiir kurze Aufrufe eingesetzt.

m Quicksort hat eine sehr kurze (= schnelle) innere Schleife. Mit
Randomisierung tritt schlechtester Fall so gut wie nie auf.

Uberblick
[e]e]]

Vergleichsbasierte Verfahren: Bemerkungen

m Insertionsort ist auf kleinen Sequenzen sehr schnell und wird
daher zum Beispiel zur Verbesserung von Mergesort und
Quicksort fiir kurze Aufrufe eingesetzt.

m Quicksort hat eine sehr kurze (= schnelle) innere Schleife. Mit
Randomisierung tritt schlechtester Fall so gut wie nie auf.

m Mergesort ist dafiir stabil. Zudem ist der Mergeschritt auch

fiir externes Sortieren relevant (dazu gleich noch mehr).
Wird z.B. gerne bei Datenbankanwendungen eingesetzt.

Uberblick
[e]e]]

Vergleichsbasierte Verfahren: Bemerkungen

m Insertionsort ist auf kleinen Sequenzen sehr schnell und wird
daher zum Beispiel zur Verbesserung von Mergesort und
Quicksort fiir kurze Aufrufe eingesetzt.

m Quicksort hat eine sehr kurze (= schnelle) innere Schleife. Mit
Randomisierung tritt schlechtester Fall so gut wie nie auf.

m Mergesort ist dafiir stabil. Zudem ist der Mergeschritt auch
fiir externes Sortieren relevant (dazu gleich noch mehr).
Wird z.B. gerne bei Datenbankanwendungen eingesetzt.

m Heapsort ist in der Praxis etwas langsamer als Mergesort,
als in-place-Verfahren aber dennoch interessant
z.B. fiir eingebettete Systeme.

Uberblick
[e]e]]

Vergleichsbasierte Verfahren: Bemerkungen

Insertionsort ist auf kleinen Sequenzen sehr schnell und wird
daher zum Beispiel zur Verbesserung von Mergesort und
Quicksort fiir kurze Aufrufe eingesetzt.

Quicksort hat eine sehr kurze (= schnelle) innere Schleife. Mit
Randomisierung tritt schlechtester Fall so gut wie nie auf.

Mergesort ist dafiir stabil. Zudem ist der Mergeschritt auch
fiir externes Sortieren relevant (dazu gleich noch mehr).
Wird z.B. gerne bei Datenbankanwendungen eingesetzt.

Heapsort ist in der Praxis etwas langsamer als Mergesort,
als in-place-Verfahren aber dennoch interessant
z.B. fiir eingebettete Systeme.

Gleiche asymptotische Laufzeit bedeutet nicht, dass Verfahren
auch gleich lange brauchen (verschiedene Konstanten in O(-)).
Heapsort braucht doppelt so viele Vergleiche wie Mergesort.

Ausblick
©000000

Ausblick

Ausblick

0@00000

Vorsortierte Daten

m Oftmals sind Teilsequenzen der Eingabe bereits vorsortiert.
m Insertionsort profitiert davon direkt.

m Von manchen Verfahren gibt es Varianten,
die Vorsortierung ausnutzen
z.B. natiirliches 2-Wege-Mergesort.

Uberblick Ausblick
00@0000

Viele gleiche Schliissel

m Tritt in praktischen Anwendungen haufig auf
z.B. Sortieren von Studierendendaten nach Geschlecht

m Von manchen Algorithmen gibt es spezialisierte Varianten
m Zum Beispiel 3-Wege-Partitionierung in Quicksort

<P | =P > P

Uberblick Ausblick

[o]e]e] lelele)

Sortieren komplexer Objekte

m Meist will man nicht nur Zahlen,
sondern komplexe Objekte sortieren.

m Hier wére es sehr teuer, bei jeder Vertauschung
die ganzen Objekte zu kopieren.

m Stattdessen: Sortiere Elemente, die nur aus Schliissel und
Zeiger/Referenz auf das tatsdchliche Objekt bestehen.

Uberblick Ausblick

[e]e]e]e] lele)

Externes Sortieren

m Sehr grosse Datensitze passen nicht in den internen Speicher.
m Annahme: interner Speicher hat Grosse m

m Lese jeweils Bereich der Grosse m ein, sortiere ihn und
schreibe ihn zuriick auf den externen Speicher.
m Dann sukzessives Mergen dhnlich zu Mergesort. Konzeptuell:
m lese jeweils Bereich der Grosse m/3 der beiden vorsortierten
Bereiche ein
m es bleiben m/3 fiir Ausgabe
m falls ein Eingabebereich erschopft ist — nachladen
m falls Ausgabebereich voll — rausschreiben

Uberblick Ausblick

[o]e]e]e]e] o)

Weniger korrekte Verfahren

INEFFECTWVE SORTS

DEFINE. HALFHEARTED MERGESORT (LisT): DEFINE. FRST BOGOSORTILIST):

IF LENGH(LIST) < 2: // AN OPTIZED BOGOSORT

RETRN LST /' RUNS N O(N Lo6N)

PNOT = INT (LENGTH(LIST) / 2) FOR N FROM 1 TO LOG(LENGTH(LIST)):

A= mmmm&om’@m:ﬁm; SHUFFLE(LST):

B = HALFHEARTEDMERGE S0RT (LisT [PnoT:] IF 1550RTED (LIST):

1 OMMMEMM RERN LisT

RETURN[A, B] /#/ HERE. SORRY. RETURN “KERNEL PRGE FAULT (ERROR (ODE: 2)°
DEFME JOBINERAES QUICKSORT (LIST): | | DEFINE PANICSORT(LisT):

0K 50 Y0U CHOOSE. A PVOT 1€ GSORED(LIST)

o

vollstandiger Comic unter https://xkcd.com/1185/
(CC BY-NC 2.5)

https://xkcd.com/1185/

Uberblick Ausblick
000000@

Andere Probleme durch Sortieren |osen

k-kleinstes Element
m zum Beispiel Finden des Medians (k = [n/2])

m Verwende Quicksort, aber mache rekursiven Aufruf
nur fiir den relevanten Bereich.

Uberblick Ausblick
000000@

Andere Probleme durch Sortieren |osen

k-kleinstes Element
m zum Beispiel Finden des Medians (k = | n/2])

m Verwende Quicksort, aber mache rekursiven Aufruf
nur fiir den relevanten Bereich.

Duplikate

m Wie viele verschiedene Schliissel gibt es? Welcher Wert ist
am h3ufigsten? Gibt es doppelte Schliissel?

m Kann man direkt mit quadratischen Algorithmen beantworten.

m Oder — schlauer — erst sortieren und
dann mit einem Durchlauf 16sen.

Quiz

kahoot.it

	Überblick
	Ausblick
	Quiz

