Algorithmen und Datenstrukturen
AT7. Sortieren Il
Marcel Liithi and Gabriele Roger

Universitat Basel

6. Marz 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

6. Marz 2019

1/33

Algorithmen und Datenstrukturen
6. Marz 2019 — A7. Sortieren Il

AT7.1 Untere Schranke

A7.2 Quicksort

AT7.3 Heapsort

AT.4 Nicht vergleichsbasierte Verfahren

A7.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

6. Mirz 2019 2/ 33

AT7. Sortieren Il

A7.1 Untere Schranke

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Untere Schranke

6. Marz 2019

3/33

AT. Sortieren Il

Sortierverfahren

Untere Schranke

-—| Selectionsort |

—| Insertionsort |

—| Mergesort |

Nicht

vergleichsbasierte
Verfahren

—| Quick Sort |

Uberblick und

Heap Sort |

Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

6. Mirz 2019 4 /33

A7. Sortieren Il Untere Schranke

Untere Schranke |

» Mergesort hatte bisher mit O(nlog, n) die beste
(Worstcase-)Laufzeit.

» Geht es noch besser?

> Wir zeigen: Nicht mit vergleichsbasierten Verfahren!

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

A7. Sortieren Il Untere Schranke

Untere Schranke Il

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.
> Verhalten hangt nur vom Ergebnis der Schliisselvergleiche ab.

> Bei jedem Schliisselvergleich gibt es zwei Moglichkeiten,
wie der Algorithmus weiter macht.

> Wir kénnen das graphisch als Baum darstellen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 6/

AT7. Sortieren Il Untere Schranke

Untere Schranke Il

v

Bindrbaum: jeder Knoten hat héchstens zwei Nachfolger

v

v

Der Knoten ganz oben ist die Wurzel.

v

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binarbaum
mit k Blattern ist mindestens log, k.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).

AT. Sortieren Il Untere Schranke

Untere Schranke IV

Was muss der Algorithmus kdnnen?
» Annahme: alle Elemente unterschiedlich
» Muss alle Eingaben der Grosse n korrekt sortieren.

» Wir kénnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

» Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: posO + pos2, posl +— posl, pos2 — posO

» Da alle moglichen Eingaben der Grosse n korrekt geldsst
werden miissen, muss der Algorithmus alle n! moglichen
Permutationen erzeugen konnen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 8 /

A7. Sortieren Il

Untere Schranke V

> Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

» Bei Eingabegrosse n muss der Baum also
mindestens n! Blatter haben.

» Die maximale Tiefe des entsprechenden Baumes
ist demnach > log,(n!).

» Es gibt also eine Eingabe der Grosse n mit
> log,(n!) Schliisselvergleichen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

A7. Sortieren Il Untere Schranke

Untere Schranke VI

Abschétzung von log,(n!)
» Esgilt n! > (g)g
41=1.2.-3 .4 >2?
>2 >2
> logy(n!) > loga((5)?2) = %llogz(%)
= 5(logy n + log, 5) = 5(logy n — log, 2)
5(logy n—1)

Theorem
Jeder vergleichsbasierte Sortieralgorithmus benétigt Q(nlog n) viele
Schliisselvergleiche. Damit liegt auch die Laufzeit in Q(nlog n).

Mergesort ist asymptotisch optimal.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 10 / 33

AT7. Sortieren Il

A7.2 Quicksort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

A7. Sortieren 111 Quicksort

-—{ Selectionsort ‘

—{ Insertionsort ‘
—{ Mergesort ‘

Sortierverfahren

Nicht —
vergleichsbasierte Minimale
Verfahren Vergleichszahl

- —{ Heap Sort
Uberblick und P ‘
Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Mirz 2019 12 /33

A7. Sortieren Il

Quicksort: ldee

» Wie Merge-Sort ein Divide-and-Conquer-Verfahren

» Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

» Hierfiir wird ein Element P gewéhlt
(das sogenannte Pivotelement).

» Dann wird so umsortiert, dass P an die endgiiltige Position
kommt, vor P nur Elemente < P stehen, und hinten nur
Elemente > P.

<P |P > P

» Macht man das rekursiv fiir den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

Quicksort

13 /33

A7. Sortieren Il

Quicksort: Algorithmus

def sort(array):
sort_aux(array, O, len(array)-1)

1
2

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)
8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

Quicksort

14 /

33

AT7. Sortieren Il

Wie wahlt man das Pivot-Element?

Fiir die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir kénnen zum Bsp. folgende Strategien wahlen:
> Naiv: Nimm immer erstes Element

» Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

» Randomisiert: Wahle zufallig ein Element aus

Quicksort

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

15 / 33

AT. Sortieren Il

Wie macht man die Umsortierung?

array

[STIETZI3Ts) -
[s[raz 0] -
[s[razsle] -
[sJaezI7Te] -
[sJeazrTe] -
2JaTalE]) -

Pivot ist an Pos 0.

Initialisiere i = lo+ 1, = hi

i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

Falls i < j: Elemente tauschen, i++, j——

i nach rechts bis zu Element > Pivot,

j nach links bis Element < Pivot

i > j: noch Pivot an Pos j tauschen

Fertig!

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

Quicksort

16

33

A7. Sortieren 111 Quicksort

Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
» O(log, n) rekursive Aufrufe
> jeweils hi-lo Schliisselvergleiche in Partitionierung

» auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlogn)

Worst case: Pivot-Element immer kleinstes oder grosstes Element

» insgesamt n-1 (nichttriviale) rekursive Aufrufe fiir Lange

nn—1,...,2.
> jeweils hi-lo Schliisselvergleiche in Partitionierung
— 0O(n?)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 18 / 33

A7. Sortieren 111 Quicksort
Quicksort: Partitionierung
1 def partition(array, lo, hi):
2 pivot = array[lo]
3 i=10+ 1
4 j = hi
5 while (True):
6 while i < hi and array[i] < pivot:
7 i+=1
8 while array[j] > pivot:
9 j =1
10 if i >= j:
11 break
12
13 array[i], array[j] = array[jl, array[il
14 i, j=i+1,3-1
15 array[lo], array[j] = arrayl[jl, array[lo]
16 return j
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 17 / 33
A7. Sortieren 111 Quicksort
Quicksort: Laufzeit Il
Average case:
» Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt
» O(log n) rekursive Aufrufe
» insgesamt O(nlog n)
» etwa 39% langsamer als best case
Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(nlog n)-Verfahren betrachtet.
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 19 / 33

AT7. Sortieren |11 Heapsort

A7.3 Heapsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 20 / 33

A7. Sortieren Il

Sortierverfahren

-—| Selectionsort |

—| Insertionsort |
—| Mergesort |

Nicht —
_ vergleichsbasierte Minimale
Verfahren Vergleichszahl

—| Quick Sort |
Uberblick und __

Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

Heapsort

21 /33

A7. Sortieren Il Heapsort

Heapsort

» Heap: Datenstruktur, die das Finden und Entnehmen des
grossten Elements besonders effizient unterstiitzt
Finden: ©(1), Entnehmen: ©(log n)

» Grundidee analog zu Selectionsort: Setze sukzessive das
grosste Element an das Ende des unsortierten Bereichs.

» Kann den Heap direkt in der Eingabesequenz reprasentieren,
so dass Heapsort nur konstanten zusatzlichen Speicherplatz
bendtigt.

» Die Laufzeit von Heapsort ist leicht iiberlinear.

» Wir besprechen die Details spater, wenn wir Heaps
genauer kennengelernt haben.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Mirz 2019 22 /33

AT7. Sortieren Il

AT.4 Nicht vergleichsbasierte
Verfahren

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

Nicht vergleichsbasierte Verfahren

23 /33

AT7. Sortieren |11 Nicht vergleichsbasierte Verfahren

Sortierverfahren

Vergleichsbasierte
Verfahren

Radixsort

Uberblick und
Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 24 / 33

AT7. Sortieren |11 Nicht vergleichsbasierte Verfahren

Countingsort: ldee

»Sortieren durch Zihlen*
> Annahme: Elemente sind aus Bereich 0,..., k — 1.

> Laufe einmal iiber die Eingabesequenz und z3hle dabei,
wie oft jedes Element vorkommt.

> Sei #i die Anzahl der Vorkommen von Element /.

> lteriere i =0,...,k—1 und
schreibe jeweils #i-mal Element i in die Sequenz.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 25 / 33

AT7. Sortieren Il1 Nicht vergleichsbasierte Verfahren

Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
— Fiir festes k linear

AT7. Sortieren |11 Nicht vergleichsbasierte Verfahren

Sortierverfahren

Vergleichsbasierte
Verfahren

Countingsort

Uberblick und
Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Mirz 2019 27 / 33

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 26 / 33
AT7. Sortieren |11 Nicht vergleichsbasierte Verfahren
Radixsort: |dee
., Sortieren durch Fachverteilen*
» Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
» Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286
» Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286
» Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.
» Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.
» usw. bis alle Stellen betrachtet wurden.
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 28 / 33

AT7. Sortieren |11 Nicht vergleichsbasierte Verfahren

Radixsort: Beispiel

» Eingabe: 263, 983, 96, 462, 286
> Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

> Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9
462 983 96
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96

AT7. Sortieren Il1 Nicht vergleichsbasierte Verfahren

Radixsort: Algorithmus (fiir beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element
6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9

digit = (elem // (base ** iteration)) 7, base

10 buckets[digit] .append(elem)
11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

6. Marz 2019 30 /33

> Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9
096 263 462 983
286
Aufsammeln ergibt: 96, 263, 286, 462, 983
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 29 / 33
AT7. Sortieren |11 Nicht vergleichsbasierte Verfahren
Radixsort: Laufzeit
» m: Maximale Anzahl Stellen in Reprasentation
mit gegebener Basis b.
» n: Lange der Eingabesequenz
» Laufzeit in O(m - (n+ b))
Fiir festes m und b hat Radixsort lineare Laufzeit.
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 31 /33

AT. Sortieren Il

A7.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

6. Mirz 2019 32/33

AT7. Sortieren |11 Zusammenfassung

Zusammenfassung

> Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht liberlineare Laufzeit.

» Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

» Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

» Sie machen jedoch zusitzliche Einschrankungen
an die verwendeten Schliissel.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 33 /33

	Untere Schranke
	Quicksort
	Heapsort
	Nicht vergleichsbasierte Verfahren
	Zusammenfassung

