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Untere Schranke |

» Mergesort hatte bisher mit O(nlog, n) die beste
(Worstcase-)Laufzeit.

» Geht es noch besser?

> Wir zeigen: Nicht mit vergleichsbasierten Verfahren!
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Untere Schranke Il

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.
> Verhalten hangt nur vom Ergebnis der Schliisselvergleiche ab.

> Bei jedem Schliisselvergleich gibt es zwei Moglichkeiten,
wie der Algorithmus weiter macht.

> Wir kénnen das graphisch als Baum darstellen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 6/

AT7. Sortieren Il Untere Schranke

Untere Schranke Il

v

Bindrbaum: jeder Knoten hat héchstens zwei Nachfolger

v

v

Der Knoten ganz oben ist die Wurzel.

v

Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binarbaum
mit k Blattern ist mindestens log, k.
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Knoten ohne Nachfolger heissen Blatter (Bild: eckige Knoten).
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Untere Schranke IV

Was muss der Algorithmus kdnnen?
» Annahme: alle Elemente unterschiedlich
» Muss alle Eingaben der Grosse n korrekt sortieren.

» Wir kénnen alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden miissen.

» Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: posO + pos2, posl +— posl, pos2 — posO

» Da alle moglichen Eingaben der Grosse n korrekt geldsst
werden miissen, muss der Algorithmus alle n! moglichen
Permutationen erzeugen konnen.
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Untere Schranke V

> Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

» Bei Eingabegrosse n muss der Baum also
mindestens n! Blatter haben.

» Die maximale Tiefe des entsprechenden Baumes
ist demnach > log,(n!).

» Es gibt also eine Eingabe der Grosse n mit
> log,(n!) Schliisselvergleichen.
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Untere Schranke VI

Abschétzung von log,(n!)
» Esgilt n! > (g)g
41=1.2.-3 .4 >2?
>2 >2
> logy(n!) > loga((5)?2) = %llogz(%)
= 5(logy n + log, 5) = 5(logy n — log, 2)
5(logy n—1)

Theorem
Jeder vergleichsbasierte Sortieralgorithmus benétigt Q(nlog n) viele
Schliisselvergleiche. Damit liegt auch die Laufzeit in Q(nlog n).

Mergesort ist asymptotisch optimal.
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A7.2 Quicksort
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Quicksort: ldee

» Wie Merge-Sort ein Divide-and-Conquer-Verfahren

» Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

» Hierfiir wird ein Element P gewéhlt
(das sogenannte Pivotelement).

» Dann wird so umsortiert, dass P an die endgiiltige Position
kommt, vor P nur Elemente < P stehen, und hinten nur
Elemente > P.

<P |P > P

» Macht man das rekursiv fiir den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.
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Quicksort: Algorithmus

def sort(array):
sort_aux(array, O, len(array)-1)

1
2

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)
8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)
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Wie wahlt man das Pivot-Element?

Fiir die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir kénnen zum Bsp. folgende Strategien wahlen:
> Naiv: Nimm immer erstes Element

» Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

» Randomisiert: Wahle zufallig ein Element aus

Quicksort

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.
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Wie macht man die Umsortierung?

array

[STIETZI3Ts) -
[s[raz 0] -
[s[razsle] -
[sJaezI7Te] -
[sJeazrTe] -
2JaTalE] ) -

Pivot ist an Pos 0.

Initialisiere i = lo+ 1, = hi

i nach rechts bis zu Element > Pivot,
j nach links bis Element < Pivot

Falls i < j: Elemente tauschen, i++, j——

i nach rechts bis zu Element > Pivot,

j nach links bis Element < Pivot

i > j: noch Pivot an Pos j tauschen

Fertig!
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Quicksort: Laufzeit |

Best case: Pivot-Element teilt in gleich grosse Bereiche
» O(log, n) rekursive Aufrufe
> jeweils hi-lo Schliisselvergleiche in Partitionierung

» auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

— O(nlogn)

Worst case: Pivot-Element immer kleinstes oder grosstes Element

» insgesamt n-1 (nichttriviale) rekursive Aufrufe fiir Lange

nn—1,...,2.
> jeweils hi-lo Schliisselvergleiche in Partitionierung
— 0O(n?)
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Quicksort: Partitionierung
1 def partition(array, lo, hi):
2 pivot = array[lo]
3 i=10+ 1
4 j = hi
5 while (True):
6 while i < hi and array[i] < pivot:
7 i+=1
8 while array[j] > pivot:
9 j =1
10 if i >= j:
11 break
12
13 array[i], array[j] = array[jl, array[il
14 i, j=i+1,3-1
15 array[lo], array[j] = arrayl[jl, array[lo]
16 return j
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Quicksort: Laufzeit Il
Average case:
» Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufillig gewahlt
» O(log n) rekursive Aufrufe
» insgesamt O(nlog n)
» etwa 39% langsamer als best case
Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(nlog n)-Verfahren betrachtet.
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A7.3 Heapsort
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Sortierverfahren
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Heapsort

» Heap: Datenstruktur, die das Finden und Entnehmen des
grossten Elements besonders effizient unterstiitzt
Finden: ©(1), Entnehmen: ©(log n)

» Grundidee analog zu Selectionsort: Setze sukzessive das
grosste Element an das Ende des unsortierten Bereichs.

» Kann den Heap direkt in der Eingabesequenz reprasentieren,
so dass Heapsort nur konstanten zusatzlichen Speicherplatz
bendtigt.

» Die Laufzeit von Heapsort ist leicht iiberlinear.

» Wir besprechen die Details spater, wenn wir Heaps
genauer kennengelernt haben.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Mirz 2019 22 /33

AT7. Sortieren Il

AT.4 Nicht vergleichsbasierte
Verfahren

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019

Nicht vergleichsbasierte Verfahren

23 /33

AT7. Sortieren |11 Nicht vergleichsbasierte Verfahren

Sortierverfahren

Vergleichsbasierte
Verfahren

Radixsort

Uberblick und
Ausblick
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Countingsort: ldee

»Sortieren durch Zihlen*
> Annahme: Elemente sind aus Bereich 0,..., k — 1.

> Laufe einmal iiber die Eingabesequenz und z3hle dabei,
wie oft jedes Element vorkommt.

> Sei #i die Anzahl der Vorkommen von Element /.

> lteriere i =0,...,k—1 und
schreibe jeweils #i-mal Element i in die Sequenz.
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Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros
3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):
10 array[pos + jl =1

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grosse der Eingabesequenz)
— Fiir festes k linear
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Sortierverfahren

Vergleichsbasierte
Verfahren

Countingsort

Uberblick und
Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Mirz 2019 27 / 33

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 6. Marz 2019 26 / 33
AT7. Sortieren |11 Nicht vergleichsbasierte Verfahren
Radixsort: |dee
., Sortieren durch Fachverteilen*
» Annahme: Schliissel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462
» Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9
462 763 96
983 286
» Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286
» Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.
» Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.
» usw. bis alle Stellen betrachtet wurden.
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Radixsort: Beispiel

» Eingabe: 263, 983, 96, 462, 286
> Aufteilung nach letzter Stelle:
0 1 2 3 4 5 6 7 8 9
462 263 96
983 286

Aufsammeln ergibt: 462, 263, 983, 96, 286

> Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9
462 983 96
263 286

Aufsammeln ergibt: 462, 263, 983, 286, 96
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Radixsort: Algorithmus (fiir beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element
6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9

digit = (elem // (base ** iteration)) 7, base

10 buckets[digit] .append(elem)
11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1
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> Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9
096 263 462 983
286
Aufsammeln ergibt: 96, 263, 286, 462, 983
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Radixsort: Laufzeit
» m: Maximale Anzahl Stellen in Reprasentation
mit gegebener Basis b.
» n: Lange der Eingabesequenz
» Laufzeit in O(m - (n+ b))
Fiir festes m und b hat Radixsort lineare Laufzeit.
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A7.5 Zusammenfassung
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Zusammenfassung

> Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht liberlineare Laufzeit.

» Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

» Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

» Sie machen jedoch zusitzliche Einschrankungen
an die verwendeten Schliissel.
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