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M. Lüthi, G. Röger (Universität Basel) Algorithmen und Datenstrukturen 6. März 2019 2 / 33

A7. Sortieren III Untere Schranke

A7.1 Untere Schranke
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Untere Schranke I

I Mergesort hatte bisher mit O(n log2 n) die beste
(Worstcase-)Laufzeit.

I Geht es noch besser?

I Wir zeigen: Nicht mit vergleichsbasierten Verfahren!
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Untere Schranke II

Betrachte beliebigen vergleichsbasierten Sortieralgorithmus A.

I Verhalten hängt nur vom Ergebnis der Schlüsselvergleiche ab.

I Bei jedem Schlüsselvergleich gibt es zwei Möglichkeiten,
wie der Algorithmus weiter macht.

I Wir können das graphisch als Baum darstellen.
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Untere Schranke III

I Binärbaum: jeder Knoten hat höchstens zwei Nachfolger

I Knoten ohne Nachfolger heissen Blätter (Bild: eckige Knoten).

I Der Knoten ganz oben ist die Wurzel.

I Die Tiefe eines Blattes entspricht der
Anzahl von Kanten von der Wurzel zu dem Blatt.

Die maximale Tiefe eines Blattes in einem Binärbaum
mit k Blättern ist mindestens log2 k .
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Untere Schranke IV

Was muss der Algorithmus können?

I Annahme: alle Elemente unterschiedlich

I Muss alle Eingaben der Grösse n korrekt sortieren.

I Wir können alle Algorithmen so anpassen, dass sie verfolgen,
von welcher Position zu welcher Position die Elemente bewegt
werden müssen.

I Das Ergebnis ist dann nicht das sortierte Array,
sondern die entsprechende Permutation.
Beispiel: pos0 7→ pos2, pos1 7→ pos1, pos2 7→ pos0

I Da alle möglichen Eingaben der Grösse n korrekt gelösst
werden müssen, muss der Algorithmus alle n! möglichen
Permutationen erzeugen können.
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Untere Schranke V

I Jedes Blatt in der Baumdarstellung
entspricht einer Permutation.

I Bei Eingabegrösse n muss der Baum also
mindestens n! Blätter haben.

I Die maximale Tiefe des entsprechenden Baumes
ist demnach ≥ log2(n!).

I Es gibt also eine Eingabe der Grösse n mit
≥ log2(n!) Schlüsselvergleichen.
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Untere Schranke VI

Abschätzung von log2(n!)

I Es gilt n! ≥ (n2 )
n
2

4! = 1 · 2 · 3
≥2
· 4
≥2
≥ 22

I log2(n!) ≥ log2((n2 )
n
2 ) = n

2 log2(n2 )
log2(n!) = n

2 (log2 n + log2
1
2) = n

2 (log2 n − log2 2)
log2(n!) = n

2 (log2 n − 1)

Theorem

Jeder vergleichsbasierte Sortieralgorithmus benötigt Ω(n log n) viele
Schlüsselvergleiche. Damit liegt auch die Laufzeit in Ω(n log n).

Mergesort ist asymptotisch optimal.
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A7.2 Quicksort
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Quicksort: Idee

I Wie Merge-Sort ein Divide-and-Conquer-Verfahren

I Die Sequenz wird nicht wie bei Mergesort nach Positionen
aufgeteilt, sondern nach Werten.

I Hierfür wird ein Element P gewählt
(das sogenannte Pivotelement).

I Dann wird so umsortiert, dass P an die endgültige Position
kommt, vor P nur Elemente ≤ P stehen, und hinten nur
Elemente ≥ P.

P≤ P ≥ P

I Macht man das rekursiv für den vorderen und den hinteren
Teil, ist die Sequenz am Ende sortiert.
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Quicksort: Algorithmus

1 def sort(array):

2 sort_aux(array, 0, len(array)-1)

3

4 def sort_aux(array, lo, hi):

5 if hi <= lo:

6 return

7 choose_pivot_and_swap_it_to_lo(array, lo, hi)

8 pivot_pos = partition(array, lo, hi)

9 sort_aux(array, lo, pivot_pos - 1)

10 sort_aux(array, pivot_pos + 1, hi)
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Wie wählt man das Pivot-Element?

Für die Korrektheit des Verfahrens ist das egal. (Warum?)

Wir können zum Bsp. folgende Strategien wählen:

I Naiv: Nimm immer erstes Element

I Median of Three: Verwende Median aus erstem,
mittlerem und letztem Element

I Randomisiert: Wähle zufällig ein Element aus

Gute Pivot-Elemente teilen Sequenz in etwa gleich grosse Bereiche.
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Wie macht man die Umsortierung?

array

. . . 5

lo

7 4 2 3 6

hi

. . . Pivot ist an Pos 0.

Initialisiere i = lo + 1, j = hi
. . . 5 7

i

4 2 3 6

j

. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 7

i

4 2 3

j

6 . . .. . .
Falls i < j : Elemente tauschen, i++, j−−

. . . 5 3 4

i

2

j

7 6 . . .. . . i nach rechts bis zu Element ≥ Pivot,

j nach links bis Element ≤ Pivot
. . . 5 3 4 2

j

7

i

6 . . .. . .
i ≥ j : noch Pivot an Pos j tauschen

. . . 2 3 4 5

j

7

i

6 . . .. . . Fertig!
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Quicksort: Partitionierung

1 def partition(array, lo, hi):

2 pivot = array[lo]

3 i = lo + 1

4 j = hi

5 while (True):

6 while i < hi and array[i] < pivot:

7 i += 1

8 while array[j] > pivot:

9 j -= 1

10 if i >= j:

11 break

12

13 array[i], array[j] = array[j], array[i]

14 i, j = i + 1, j - 1

15 array[lo], array[j] = array[j], array[lo]

16 return j
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Quicksort: Laufzeit I

Best case: Pivot-Element teilt in gleich grosse Bereiche

I O(log2 n) rekursive Aufrufe

I jeweils hi-lo Schlüsselvergleiche in Partitionierung

I auf einer Rekursionsebene insgesamt O(n) Vergleiche in
Partitionierung

→ O(n log n)

Worst case: Pivot-Element immer kleinstes oder grösstes Element

I insgesamt n-1 (nichttriviale) rekursive Aufrufe für Länge
n, n − 1, . . . , 2.

I jeweils hi-lo Schlüsselvergleiche in Partitionierung

→ Θ(n2)
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Quicksort: Laufzeit II

Average case:

I Annahme: n verschiedene Elemente,
jede der n! Permutationen gleich wahrscheinlich,
Pivotelement zufällig gewählt

I O(log n) rekursive Aufrufe

I insgesamt O(n log n)

I etwa 39% langsamer als best case

Bei randomisierter Pivotwahl tritt worst-case quasi nicht auf.
Quicksort wird daher oft als O(n log n)-Verfahren betrachtet.
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A7.3 Heapsort
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Heapsort

I Heap: Datenstruktur, die das Finden und Entnehmen des
grössten Elements besonders effizient unterstützt
Finden: Θ(1), Entnehmen: Θ(log n)

I Grundidee analog zu Selectionsort: Setze sukzessive das
grösste Element an das Ende des unsortierten Bereichs.

I Kann den Heap direkt in der Eingabesequenz repräsentieren,
so dass Heapsort nur konstanten zusätzlichen Speicherplatz
benötigt.

I Die Laufzeit von Heapsort ist leicht überlinear.

I Wir besprechen die Details später, wenn wir Heaps
genauer kennengelernt haben.
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A7.4 Nicht vergleichsbasierte
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Countingsort: Idee

”
Sortieren durch Zählen“

I Annahme: Elemente sind aus Bereich 0, . . . , k − 1.

I Laufe einmal über die Eingabesequenz und zähle dabei,
wie oft jedes Element vorkommt.

I Sei #i die Anzahl der Vorkommen von Element i .

I Iteriere i = 0, . . . , k − 1 und
schreibe jeweils #i-mal Element i in die Sequenz.
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Countingsort: Algorithmus

1 def sort(array, k):

2 counts = [0] * k # list of k zeros

3 for elem in array:

4 counts[elem] += 1

5

6 pos = 0

7 for i in range(k):

8 occurrences_of_i = counts[i]

9 for j in range(occurrences_of_i):

10 array[pos + j] = i

11 pos += occurrences_of_i

Laufzeit: O(n + k) (n Grösse der Eingabesequenz)
Laufzeit: → Für festes k linear
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Radixsort: Idee

”
Sortieren durch Fachverteilen“

I Annahme: Schlüssel sind Zahlen im Dezimalsystem
z.B. 763, 983, 96, 286, 462

I Teile Zahlen nach letzter Stelle auf:
0 1 2 3 4 5 6 7 8 9

462 763
983

96
286

I Sammle Zahlen von vorne nach hinten/oben nach unten auf
462, 763, 983, 96, 286

I Teile Zahlen nach vorletzter Stelle auf, sammle sie auf.

I Teile Zahlen nach drittletzter Stelle auf, sammle sie auf.

I usw. bis alle Stellen betrachtet wurden.
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Radixsort: Beispiel

I Eingabe: 263, 983, 96, 462, 286
I Aufteilung nach letzter Stelle:

0 1 2 3 4 5 6 7 8 9

462 263
983

96
286

Aufsammeln ergibt: 462, 263, 983, 96, 286

I Aufteilung nach vorletzter Stelle:
0 1 2 3 4 5 6 7 8 9

462
263

983
286

96

Aufsammeln ergibt: 462, 263, 983, 286, 96

I Aufteilung nach drittletzter Stelle:
0 1 2 3 4 5 6 7 8 9

096 263
286

462 983

Aufsammeln ergibt: 96, 263, 286, 462, 983
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Radixsort: Algorithmus (für beliebige Basis)

1 def sort(array, base=10):

2 if not array: # array is empty

3 return

4 iteration = 0

5 max_val = max(array) # identify largest element

6 while base ** iteration <= max_val:

7 buckets = [[] for num in range(base)]

8 for elem in array:

9 digit = (elem // (base ** iteration)) % base

10 buckets[digit].append(elem)

11 pos = 0

12 for bucket in buckets:

13 for elem in bucket:

14 array[pos] = elem

15 pos += 1

16 iteration += 1
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Radixsort: Laufzeit

I m: Maximale Anzahl Stellen in Repräsentation
mit gegebener Basis b.

I n: Länge der Eingabesequenz

I Laufzeit in O(m · (n + b))

Für festes m und b hat Radixsort lineare Laufzeit.
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A7.5 Zusammenfassung
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Zusammenfassung

I Jedes vergleichsbasierte Sortierverfahren hat
mindestens leicht überlineare Laufzeit.

I Quicksort ist ein Divide-and-Conquer-Verfahren, das die
Elemente relativ zu einem Pivotelement aufteilt.

I Countingsort und Radixsort sind nicht vergleichsbasiert
und erlauben (unter bestimmten Restriktionen)
ein Sortieren in linearer Zeit.

I Sie machen jedoch zusätzliche Einschränkungen
an die verwendeten Schlüssel.
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