Algorithmen und Datenstrukturen

Ab. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Marcel Liithi and Gabriele Réger

Universitdt Basel

27. Februar 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 1/35

Algorithmen und Datenstrukturen
27. Februar 2019 — Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

A5.1 Laufzeitanalyse Allgemein
Ab.2 Beispiel: Selectionsort
Ab.3 Exkurs: Logarithmus
Ab.4 Beispiel: Mergesort

Ab5.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

2/35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

A5.1 Laufzeitanalyse Allgemein

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 3/35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Inhalt dieser Veranstaltung

—| Sortieren |

Fundamentale

Datenstrukturen

AT —{ Suchen |
% Graphen |

% Strings |

|| Weiterfiihrende

Themen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Laufzeitanalyse Allgemein

4/ 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

» Ware schon: Formel, die fiir konkrete Eingabe berechnet,
wie lange das Programm l3uft.
> exakte Laufzeitprognose schwierig, da zu viele Einfliisse:
» Geschwindigkeit und Architektur des Computers
» Programmiersprache
Compilerversion
aktuelle Auslastung (was sonst noch lauft)
Cacheverhalten

v vy

Wir kdonnen und wollen das nicht alles in die Formel aufnehmen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 5/ 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 1

Z3hle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

> Idealerweise: eine Zeile Maschinencode oder — noch praziser —
ein Prozessorzyklus
> Stattdessen: Anweisungen, die konstante Zeit bendtigen
» konstante Zeit: Laufzeit unabhingig von Eingabe
ignoriere Laufzeitunterschiede verschiedener Anweisungen
z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
grob: Operation = eine Zeile Code
aber: auch beachten, was dahinter steht
z.B. Schritte innerhalb einer aufgerufenen Funktion

vV YyVvyy

Wichtig: Laufzeit ungefahr proportional zu Anzahl Operationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 6 /35

A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 2

Schéatze ab statt genau zu zdhlen!

> Meistens Abschitzung nach oben (,,obere Schranke")
Wie viele Schritte braucht das Programm hochstens?

» Manchmal auch Abschétzung nach unten (,,untere Schranke")
Wie viele Schritte werden mindestens ausgefiihrt?

»Laufzeit" fiir Abschatzung der Anzahl ausgefiihrter Operationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 7/ 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 3

Abschatzung nur abhangig von Eingabegrosse

» T(n): Laufzeit bei Eingabe der Grosse n
» Bei adaptiven Verfahren unterscheiden wir

» Beste Laufzeit (best case)
Laufzeit bei giinstigstmoglicher Eingabe
» Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestméglicher Eingabe
» Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit iiber alle Eingaben der Grosse n

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 8 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Kostenmodelle

Auch: Analyse mit Kostenmodell
> Identifiziere grundlegende Operationen der Algorithmenklasse
z.B. fiir vergleichsbasierte Sortierverfahren
» Vergleich von Schliisselpaaren
» Tausch zweier Elemente oder Bewegung eines Elementes

» Schitze Anzahl dieser Operationen ab.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Laufzeitanalyse Allgemein

9 /35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Beispiel aus C++-Referenz

function template
sta::SOrt
template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

<algorithm>

Sort elements in range
Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operators< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity
On average, linearithmic in the distance between first and last: Performs approximately N*1og,(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Laufzeitanalyse Allgemein

10 / 35

Ab5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort

A5.2 Beispiel: Selectionsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Beispiel: Selectionsort

11 /35

A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort

Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # 4 =0, ..., n-2

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = ¢+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position 7 with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[i]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Beispiel: Selectionsort

12 / 35

http://www.cplusplus.com/reference/algorithm/sort/

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante ¢’

» Aussere Schleife (3-10) und innere Schleife (6-8)
» Anzahl Operationen fiir jede Iteration der dusseren Schleife:
» Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
» Konstante b fiir Anzahl Operationen in Zeilen 5 und 10
i | # Operationen
0|a(n—1)+b
1lan—2)+b

n2|a-1+b
» Insgesamt: T(n) = 27:_()2(3(” —(i+1))+b)

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 27. Februar 2019 13 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Selectionsort: Analyse Il

T(n) = Z:;(a(n —(i+1))+b)
=" Na(n—i) + b)

n—1 .
= azizl (n—1i)+b(n—1)
=0.5a(n—1)n+ b(n—1)
< 0.5an* + b(n — 1)
< 0.5an* + b(n — 1)n
< 0.5an” + bn?
=0.5(a+ b)n?

= mit ¢’ = 0.5(a + b) gilt fiir n > 1, dass T(n) < ¢’ - n?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Beispiel: Selectionsort

14 / 35

A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante ¢

T(n)=---=05a(n—1)n+ b(n—1)
> 0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?

Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten
c>0,c >0,n9 >0, so dass fiir n > ny: cn®> < T(n) < c'n?.

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 27. Februar 2019 15 /35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit
Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 108 Sek.
> Bei 1 Tsd. Elementen warten wir
1078 . (10%)2 =108 . 10° = 102 = 0.02 Sekunden.
» Bei 10 Tsd. Elementen 1078 - (10*)?> = 1 Sekunde
> Bei 100 Tsd. Elementen 1078 - (10%)?> = 100 Sekunden
» Bei 1 Mio. Elementen 1078 - (10°)? Sekunden = 2.77 Stunden

» Bei 1 Mrd. Elementen 1078 - (10°)? Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind , nur" 4 GB.

Quadratische Laufzeit problematisch fiir grosse Eingaben

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Beispiel: Selectionsort

16 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort mit Kostenmodell

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # ¢ =0, ..., n-2

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = i+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position 7 with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[il

— n-1 mal Tausch zweier Elemente (,,linear")
— 0.5(n-1)n Schlisselvergleiche (,,quadratisch*)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 17 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

A5.3 Exkurs: Logarithmus

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Exkurs: Logarithmus

27. Februar 2019

18 / 35

Ab5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus

> In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

» Dies ist bei der Analyse von Laufzeiten oft der Fall.

> Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

log, x = y gdw. b = x.
» Beispiele: log, 8 =3, da 23 =8
Beispiele: log3 81 = 4, da 3* = 81

» log, a intuitiv (wenn das glatt aufgeht):
»Wie oft muss man a durch b teilen bis man bei 1 ist?"

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 19 /35

A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort

Logarithmus: lllustration

Exkurs: Logarithmus

l— logoz — log.x — logpz

— logp sz

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

27. Februar 2019

20 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
(&) =av =(a) und a¥a¥ = a*:

Produktregel log,(xy) = logp x + log, y
Potenzrechnung log,(x") = rlogy x
Basisumrechnung log, x = log, x/ log, b
Summenregel logy(x + y) = logy x + log,(1 + y/x)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 21 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man ofters Ausdriicken der
Form a'°85*. Wie bekommt man da den Logarithmus aus dem
Exponenten?

Beispiel: 5082
Wir verwenden 5 = 2/°825,
5Iog2 X _ (2Iog2 5)|og2 X

— 2Iog2 5log, x

— 2|og2 xlog, 5
(2bg2X)bg25
Xlog2 5

~ X2.32

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 27. Februar 2019

Exkurs: Logarithmus

22 /35

A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Beispiel: Mergesort

Ab5.4 Beispiel: Mergesort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 23 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):
2 i=1lo
c |3 j =mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,h%
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp[k] = array[il
7 i+=1
8 else:
(o) .
9 tmp[k] = array[j]
10 j+=1
11 for k in range(lo, hi + 1): # k = lo,...,h%
12 array[k] = tmp[k]
oy

Wir analysieren Laufzeit fiir m :=hi—lo+1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Beispiel: Mergesort

24 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt: Analyse

T(m)=ca +com+cam

> (c2+c3)m
Fir m> 1:
T(m)=c+ cm+cm
<cm-+com+czm
::(c1 + +-C3)In
Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
c,c’,ng >0, so dass fiir alle n > ng: cn < T(n) < c’n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 25 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge(array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Wir verwenden fiir die Abschatzung:
c1 Zeilen 2-4 Annahme: merge benétigt
co Zeilen 6 und 12 cs(hi-lo+1) Operationen.
c3 Zeilen 8,9,11

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 26 / 35

A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € Nog

lterationen der dusseren Schleife (m fiir hi-lo+1):
» lteration 1: n/2 mal innere Schleife mit Merge fiir m = 2
¢+ n/2(c3 +2cs) = ca +0.5¢c3n+ can
» lteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
e+ n/d(c3+4c) = c+0.25¢c3n+ can

» Aussere Schleife endet nach letzter Iteration /.

> lteration /: 1 mal innere Schleife mit Merge fiir m=n
¢+ n/n(c3 + ncy) = o+ ¢34+ can

Insgesamt T(n) < c1 +4(ca + czn+ can) < l(ci + ¢+ 3+ ca)n

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 27 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse Il

Wie gross ist £7
> In Iteration i ist fiir den Merge-Schritt m = 2
» In lteration ¢ hat Merge-Schritt m =2/ =n
» Dan=2ist { =k =log,n.

Mit ¢ := ¢1 + ¢ + ¢c3 + ¢4 erhalten wir T(n) < cnlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 28 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse Il Bottom-Up-Mergesort: Analyse IV

Ahnliche Abschitzung auch fiir untere Schranke maglich.

Was, wenn n keine Zweierpotenz, also 2k~1 < n < 2k? — Ubung
» Trotzdem k lterationen der dusseren Schleife.
» Innere Schleife verwendet nicht mehr Operationen. Theorem
> T(n) < cnk = cn(|log, n| + 1) < 2cnlog, n (fiir k > 2) Bottom-Up-Mergesort hat leicht liberlineare Laufzeit, d.h.

es gibt Konstanten ¢, c’, ng > 0, so dass fiir alle n > nq gilt
cnlogy n < T(n) < c’nlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 29 / 35 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 30 / 35
A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Beispiel: Mergesort Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort
Leicht {iberlineare Laufzeit Mergesort mit Kostenmodell |

Leicht iiberlineare Laufzeit nlog, n:

— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit Schliisselvergleiche

Was bedeutet das in der Praxis? » Werden nur in merge durchgefiihrt.
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek. » Mergen zweier Teilfolgen der Linge m und n bendtigt
> Bei 1 Tsd. Elementen warten wir bestenfalls min(n, m) und schlimmstenfalls n4+ m — 1
10~ - 10° log,(103) ~ 0.0001 Sekunden. Vergleiche.
> Bei 10 Tsd. Elementen ~ 0.0013 Sekunden > Bei zwei etwa gleich langen Teilfolgen sind das linear viele

Vergleiche, d.h. es gibt ¢, ¢’ > 0, so dass Anzahl Vergleiche

> Bei 100 Tsd. Elementen ~ 0.017 Sekunden zwischen ¢n und ¢'n liegt

> Bei 1 Mio. Elementen ~ 0.2 Sekunden — Anzahl der zum Sortieren einer Sequenz notwendigen

> Bei 1 Mrd. Elementen = 299 Sekunden Schliisselvergleiche ist leicht liberlinear in der Lange der

Sequenz (analog zu Laufzeitanalyse).
Laufzeit nlog, n nicht viel schlechter als lineare Laufzeit

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 31 /35 M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 32 /35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Mergesort mit Kostenmodell |

Elementbewegungen
> Werden nur in merge durchgefiihrt.
> 2n Bewegungen fiir Sequenz der Lange n.

> Insgesamt fiir Mergesort leicht iiberlinear
(analog zu Schliisselvergleichen)

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

A5.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

27. Februar 2019

34 /35

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 33 /35
A5. Laufzeitanalyse: Einfithrung, Selection- und Mergesort Zusammenfassung
Zusammenfassung

> Bei der Laufzeitanalyse schiatzen wir die Anzahl der
ausgefiihrten Operationen ab.
» Wir z3hlen nicht exakt.
» Wir ignorieren, wie lange eine Operation tatsachlich dauert.
» Hauptsache: Laufzeit ungefahr proportional zu Anzahl
Operationen.
> Selectionsort hat quadratische Laufzeit und bendtigt linear
viele Vertauschungen und quadratisch viele
Schliisselvergleiche.

» Mergesort hat leicht liberlineare Laufzeit, Schliisselvergleiche
und Elementbewegungen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 35 /35

	Laufzeitanalyse Allgemein
	Beispiel: Selectionsort
	Exkurs: Logarithmus
	Beispiel: Mergesort
	Zusammenfassung

