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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

A5.1 Laufzeitanalyse Allgemein
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

» Waire schon: Formel, die fiir konkrete Eingabe berechnet,
wie lange das Programm lauft.

> exakte Laufzeitprognose schwierig, da zu viele Einfliisse:

» Geschwindigkeit und Architektur des Computers

Programmiersprache

Compilerversion

aktuelle Auslastung (was sonst noch lduft)

Cacheverhalten

vV vy vVvYy

Wir kdnnen und wollen das nicht alles in die Formel aufnehmen.
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 1

Zahle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

> ldealerweise: eine Zeile Maschinencode oder — noch praziser —
ein Prozessorzyklus
> Stattdessen: Anweisungen, die konstante Zeit bendtigen
» konstante Zeit: Laufzeit unabhangig von Eingabe
ignoriere Laufzeitunterschiede verschiedener Anweisungen
z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
grob: Operation = eine Zeile Code
aber: auch beachten, was dahinter steht
z.B. Schritte innerhalb einer aufgerufenen Funktion

vV vy vVvyy

Wichtig: Laufzeit ungefdhr proportional zu Anzahl Operationen
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 2

Schéatze ab statt genau zu zahlen!

» Meistens Abschitzung nach oben (,,obere Schranke®)
Wie viele Schritte braucht das Programm hochstens?

» Manchmal auch Abschétzung nach unten (,,untere Schranke")
Wie viele Schritte werden mindestens ausgefiihrt?

»Laufzeit” fiir Abschdtzung der Anzahl ausgefiihrter Operationen
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 3

Abschatzung nur abhangig von Eingabegrosse

» T(n): Laufzeit bei Eingabe der Grosse n
» Bei adaptiven Verfahren unterscheiden wir
» Beste Laufzeit (best case)
Laufzeit bei giinstigstmoglicher Eingabe
» Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestméglicher Eingabe
» Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit iiber alle Eingaben der Grdsse n
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Kostenmodelle

Auch: Analyse mit Kostenmodell

> ldentifiziere grundlegende Operationen der Algorithmenklasse
z.B. fiir vergleichsbasierte Sortierverfahren

» Vergleich von Schliisselpaaren
» Tausch zweier Elemente oder Bewegung eines Elementes

> Schatze Anzahl dieser Operationen ab.
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Beispiel aus C+-+-Referenz

function template
std:SOrt <algorithm>

template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);
template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

Sort elements in range
Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity

On average, linearithmic in the distance between first and /ast: Performs approximately N*1log(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

A5.2 Beispiel: Selectionsort
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Selectionsort: Algorithmus

Beispiel: Selectionsort

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # ¢ =0, ...,

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = 4+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position % with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[i]
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante ¢’
g g

» Aussere Schleife (3-10) und innere Schleife (6-8)

» Anzahl Operationen fiir jede lteration der dusseren Schleife:

» Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
» Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

i | # Operationen

0|a(n—1)+b
1]aln—2)+b
n-2|a-1+b

> Insgesamt: T(n) = Y7 2(a(n — (i + 1)) + b)
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse Il

T(n) =3 “(a(n—(i+1)) +b)
=" (a(n— i)+ b)
= 32:11(n — i)+ b(n—1)
=0.5a(n—1)n+ b(n—1)
< 0.5an* 4 b(n — 1)
< 0.5an* + b(n —1)n
< 0.5an? + bn?
=0.5(a+ b)n?

= mit ¢’ = 0.5(a+ b) gilt fiir n > 1, dass T(n) < ¢’ - n?
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante c

T(n)=---=0.5a(n—1)n+ b(n—1)
>0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?
Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten

c>0,¢ >0,np >0, so dass fiir n > ng: cn®> < T(n) < c’n?.
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit
Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.
> Bei 1 Tsd. Elementen warten wir
1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.
» Bei 10 Tsd. Elementen 1078 . (10*)2 = 1 Sekunde
» Bei 100 Tsd. Elementen 1078 - (10%)? = 100 Sekunden
» Bei 1 Mio. Elementen 1078 - (10°)? Sekunden = 2.77 Stunden

» Bei 1 Mrd. Elementen 108 - (10°)2 Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind ,,nur" 4 GB.

Quadratische Laufzeit problematisch fiir grosse Eingaben
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Selectionsort mit Kostenmodell

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):
n = len(array)
for i in range(n - 1): # 4 =0, ..., n-2

# find index of minimum element at positions %, ..., n-1

min_index = i
for j in range(i + 1, n): # j = i+1, ..., n-1
if array[j] < array[min_index]:
min_index = j
# swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

— n-1 mal Tausch zweier Elemente (, linear")
— 0.5(n-1)n Schliisselvergleiche (,,quadratisch")
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

A5.3 Exkurs: Logarithmus
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus

> In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

> Dies ist bei der Analyse von Laufzeiten oft der Fall.

> Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

log, x =y gdw. b = x.

> Beispiele: log,8 =3, da 23 =8
Beispiele: logz 81 = 4, da 34 =81
» log, a intuitiv (wenn das glatt aufgeht):
., Wie oft muss man a durch b teilen bis man bei 1 ist?"
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus: Illustration

l— logsx — log.> — loggz — loggsx

5 ‘ 1 ! ! ! ! ! ‘ ! 1
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
() = a¥ = (a) und a*a¥ = V-

Produktregel logy(xy) = logy, x + logy y
Potenzrechnung log,(x") = rlog, x

Basisumrechnung log, x = log, x/ log, b
Summenregel log,(x + y) = log, x + log,(1 + y/x)
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Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man ofters Ausdriicken der
Form a'°8*_ Wie bekommt man da den Logarithmus aus dem

Exponenten?

Beispiel: 5'982%
Wir verwenden 5 = 29825
5Iog2x _ (2Iog2 5)|0g2x
_ 2Iog25log2x
— 2Iog2xlog25
_ (2Iog2 x)|°g2 5
_ Xlog2 5

~ X2‘32
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Ab5.4 Beispiel: Mergesort
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):
2 i=1lo
ol j = mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,ht
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp [k] = arrayl[il
7 i+=1
8 else:
Co .
9 tmp [k] = arrayl[j]
10 j+=1
11 for k in range(lo, hi + 1): # k = lo,...,ht
12 array[k] = tmpl[k]
a3

Wir analysieren Laufzeit fiir m :=hi —lo+1
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Merge-Schritt: Analyse

Beispiel: Mergesort

T(m) =cC +cm-+c3m

> (2 +c)m
Fir m> 1:

T(m) =cCc+com+c3m
<cm+cm+4 cam
=(a+c+a)m

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
¢,c’,ng >0, so dass fiir alle n > ng: cn < T(n) < c’n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 25 /35



A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Wir verwenden fiir die Abschatzung:
c1  Zeilen 2—4 Annahme: merge bendtigt

co  Zeilen 6 und 12 ca(hi-lo+1) Operationen.
c3 Zeilen 8,9,11

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 26 / 35



A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € N5

Iterationen der dusseren Schleife (m fiir hi-lo+1):

>

Insgesamt T(n) < ¢+ ¥(co + csn+ can) < l(c1 + o + 3+ ca)n

Iteration 1: n/2 mal innere Schleife mit Merge fiir m =2
2+ n/2(c3 4+ 2cs) = ca + 0.5¢c3n + can

Iteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 + 4cy) = o + 0.25¢c3n + can

Aussere Schleife endet nach letzter Iteration /.

Iteration ¢: 1 mal innere Schleife mit Merge fiir m = n
e+ n/n(cs+ ncy) =+ c3+ can
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse |l

Wie gross ist £7
» In lteration i ist fiir den Merge-Schritt m = 2
» In lteration ¢ hat Merge-Schritt m = 2¢ = n

» Da n=2kist £ = k = log, n.

Mit ¢ := c1 + ¢ + ¢3 + ¢4 erhalten wir T(n) < cnlog, n.
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse Il

Was, wenn n keine Zweierpotenz, also 2k=1 < n < 2k?
» Trotzdem k Iterationen der dusseren Schleife.
> Innere Schleife verwendet nicht mehr Operationen.
» T(n) < cnk = cn(|logy, n] + 1) < 2cnlog, n (fiir k > 2)
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse |V

Ahn__liche Abschatzung auch fiir untere Schranke mdoglich.
— Ubung

Theorem

Bottom-Up-Mergesort hat leicht iiberlineare Laufzeit, d.h.
es gibt Konstanten c,c’, ng > 0, so dass fiir alle n > ng gilt
cnlogy, n < T(n) < c’nlog, n.
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 10~8 Sek.

» Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

> Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
> Bei 100 Tsd. Elementen ~ 0.017 Sekunden
> Bei 1 Mio. Elementen = 0.2 Sekunden
> Bei 1 Mrd. Elementen ~ 299 Sekunden

Laufzeit nlog, n nicht viel schlechter als lineare Laufzeit
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Mergesort mit Kostenmodell |

Schliisselvergleiche

» Werden nur in merge durchgefiihrt.

> Mergen zweier Teilfolgen der Lange m und n bendtigt
bestenfalls min(n, m) und schlimmstenfalls n+ m — 1
Vergleiche.

> Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt ¢, ¢’ > 0, so dass Anzahl Vergleiche
zwischen cn und ¢’n liegt.

— Anzahl der zum Sortieren einer Sequenz notwendigen
Schliisselvergleiche ist leicht tiberlinear in der Lange der
Sequenz (analog zu Laufzeitanalyse).
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Mergesort mit Kostenmodell |l

Elementbewegungen

» Werden nur in merge durchgefiihrt.

» 2n Bewegungen fiir Sequenz der Lange n.

> Insgesamt fiir Mergesort leicht iiberlinear
(analog zu Schliisselvergleichen)
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Beispiel: Mergesort
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Zusammenfassung

A5.5 Zusammenfassung
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A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Zusammenfassung

Zusammenfassung

» Bei der Laufzeitanalyse schatzen wir die Anzahl der
ausgefiihrten Operationen ab.

> Wir zdhlen nicht exakt.
» Wir ignorieren, wie lange eine Operation tatséchlich dauert.
» Hauptsache: Laufzeit ungeféhr proportional zu Anzahl
Operationen.
» Selectionsort hat quadratische Laufzeit und bendtigt linear
viele Vertauschungen und quadratisch viele
Schliisselvergleiche.

» Mergesort hat leicht {iberlineare Laufzeit, Schliisselvergleiche
und Elementbewegungen.
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