Algorithmen und Datenstrukturen
A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Marcel Liithi and Gabriele Roger

Universitat Basel

27. Februar 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 1/35

Algorithmen und Datenstrukturen
27. Februar 2019 — Ab. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

A5.1 Laufzeitanalyse Allgemein
A5.2 Beispiel: Selectionsort
Ab.3 Exkurs: Logarithmus
Ab5.4 Beispiel: Mergesort

A5.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

2/35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

A5.1 Laufzeitanalyse Allgemein

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 27. Februar 2019 3/35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Inhalt dieser Veranstaltung

—| Sortieren |
| Fundamentale
Datenstrukturen
s B
—‘ Graphen |
—| Strings |
| Weiterfiihrende
Themen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 4 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Exakte Laufzeitanalyse unrealistisch

» Waire schon: Formel, die fiir konkrete Eingabe berechnet,
wie lange das Programm lauft.

> exakte Laufzeitprognose schwierig, da zu viele Einfliisse:

» Geschwindigkeit und Architektur des Computers

Programmiersprache

Compilerversion

aktuelle Auslastung (was sonst noch lduft)

Cacheverhalten

vV vy vVvYy

Wir kdnnen und wollen das nicht alles in die Formel aufnehmen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

5/

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 1

Zahle Anzahl der Operationen statt die Zeit zu messen!

Was ist eine Operation?

> ldealerweise: eine Zeile Maschinencode oder — noch praziser —
ein Prozessorzyklus
> Stattdessen: Anweisungen, die konstante Zeit bendtigen
» konstante Zeit: Laufzeit unabhangig von Eingabe
ignoriere Laufzeitunterschiede verschiedener Anweisungen
z.B. Addition, Zuweisung, Verzweigung, Funktionsaufruf
grob: Operation = eine Zeile Code
aber: auch beachten, was dahinter steht
z.B. Schritte innerhalb einer aufgerufenen Funktion

vV vy vVvyy

Wichtig: Laufzeit ungefdhr proportional zu Anzahl Operationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

6 /

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 2

Schéatze ab statt genau zu zahlen!

» Meistens Abschitzung nach oben (,,obere Schranke®)
Wie viele Schritte braucht das Programm hochstens?

» Manchmal auch Abschétzung nach unten (,,untere Schranke")
Wie viele Schritte werden mindestens ausgefiihrt?

»Laufzeit” fiir Abschdtzung der Anzahl ausgefiihrter Operationen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 7 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Laufzeitanalyse: Vereinfachung 3

Abschatzung nur abhangig von Eingabegrosse

» T(n): Laufzeit bei Eingabe der Grosse n
» Bei adaptiven Verfahren unterscheiden wir
» Beste Laufzeit (best case)
Laufzeit bei giinstigstmoglicher Eingabe
» Schlechteste Laufzeit (worst case)
Laufzeit bei schlechtestméglicher Eingabe
» Mittlere Laufzeit (average case)
Durchschnitt der Laufzeit iiber alle Eingaben der Grdsse n

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 8 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Kostenmodelle

Auch: Analyse mit Kostenmodell

> ldentifiziere grundlegende Operationen der Algorithmenklasse
z.B. fiir vergleichsbasierte Sortierverfahren

» Vergleich von Schliisselpaaren
» Tausch zweier Elemente oder Bewegung eines Elementes

> Schatze Anzahl dieser Operationen ab.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 9 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Laufzeitanalyse Allgemein

Beispiel aus C+-+-Referenz

function template
std:SOrt <algorithm>

template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);
template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

Sort elements in range
Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable_sort).

[# complexity

On average, linearithmic in the distance between first and /ast: Performs approximately N*1log(N) (where N is this
distance) comparisons of elements, and up to that many element swaps (or moves).

http://www.cplusplus.com/reference/algorithm/sort/

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 10 / 35

http://www.cplusplus.com/reference/algorithm/sort/

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

A5.2 Beispiel: Selectionsort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 27. Februar 2019 11 /35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Selectionsort: Algorithmus

Beispiel: Selectionsort

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # ¢ =0, ...,

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = 4+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position % with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[i]

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

12 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse |

Wir zeigen: T(n) < ¢’ - n? fiir n > 1 und irgendeine Konstante ¢’
g g

» Aussere Schleife (3-10) und innere Schleife (6-8)

» Anzahl Operationen fiir jede lteration der dusseren Schleife:

» Konstante a fiir Anzahl Operationen in Zeilen 7 und 8
» Konstante b fiir Anzahl Operationen in Zeilen 5 und 10

i | # Operationen

0|a(n—1)+b
1]aln—2)+b
n-2|a-1+b

> Insgesamt: T(n) = Y7 2(a(n — (i + 1)) + b)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 13 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse Il

T(n) =3 “(a(n—(i+1)) +b)
=" (a(n— i)+ b)
= 32:11(n — i)+ b(n—1)
=0.5a(n—1)n+ b(n—1)
< 0.5an* 4 b(n — 1)
< 0.5an* + b(n —1)n
< 0.5an? + bn?
=0.5(a+ b)n?

= mit ¢’ = 0.5(a+ b) gilt fiir n > 1, dass T(n) < ¢’ - n?

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 14 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse Il

Zu grossziigig abgeschatzt?

Wir zeigen fiir n > 2: T(n) > c - n? fiir irgendeine Konstante c

T(n)=---=0.5a(n—1)n+ b(n—1)
>0.5a(n—1)n
> 0.25an? (n—1>0.5n fiir n > 2)

= mit ¢ = 0.25a gilt fiir n > 2, dass T(n) > c- n?
Theorem
Selectionsort hat quadratische Laufzeit, d.h. es gibt Konstanten

c>0,¢ >0,np >0, so dass fiir n > ng: cn®> < T(n) < c’n?.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 15 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Selectionsort

Selectionsort: Analyse IV

Quadratische Laufzeit:
doppelt so grosse Eingabe, ca. viermal so lange Laufzeit
Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 1078 Sek.
> Bei 1 Tsd. Elementen warten wir
1078 - (10%)? = 1078 - 10° = 102 = 0.02 Sekunden.
» Bei 10 Tsd. Elementen 1078 . (10*)2 = 1 Sekunde
» Bei 100 Tsd. Elementen 1078 - (10%)? = 100 Sekunden
» Bei 1 Mio. Elementen 1078 - (10°)? Sekunden = 2.77 Stunden

» Bei 1 Mrd. Elementen 108 - (10°)2 Sekunden = 317 Jahre
1 Mrd. Zahlen bei 4 Bytes/Zahl sind ,,nur" 4 GB.

Quadratische Laufzeit problematisch fiir grosse Eingaben

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 16 / 35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Selectionsort mit Kostenmodell

1
2
3
4
5
6
7
8
9

10

def selection_sort(array):
n = len(array)
for i in range(n - 1): # 4 =0, ..., n-2

find index of minimum element at positions %, ..., n-1

min_index = i
for j in range(i + 1, n): # j = i+1, ..., n-1
if array[j] < array[min_index]:
min_index = j
swap element at position % with minimum element
array[i], array[min_index] = array[min_index], arrayl[i]

— n-1 mal Tausch zweier Elemente (, linear")
— 0.5(n-1)n Schliisselvergleiche (,,quadratisch")

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Beispiel: Selectionsort

17 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

A5.3 Exkurs: Logarithmus

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 27. Februar 2019 18 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus

> In der Analyse von Mergesort werden wir eine
Logarithmusfunktion verwendet.

> Dies ist bei der Analyse von Laufzeiten oft der Fall.

> Der Logarithmus zur Basis b ist invers zur
Exponentialfunktion mit Basis b, also

log, x =y gdw. b = x.

> Beispiele: log,8 =3, da 23 =8
Beispiele: logz 81 = 4, da 34 =81
» log, a intuitiv (wenn das glatt aufgeht):
., Wie oft muss man a durch b teilen bis man bei 1 ist?"

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 19 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Logarithmus: Illustration

l— logsx — log.> — loggz — loggsx

5 ‘ 1 ! ! ! ! ! ‘ ! 1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 20 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Exkurs: Logarithmus

Rechenregeln Logarithmus

Die Rechenregeln ergeben sich direkt aus den Regeln
() = a¥ = (a) und a*a¥ = V-

Produktregel logy(xy) = logy, x + logy y
Potenzrechnung log,(x") = rlog, x

Basisumrechnung log, x = log, x/ log, b
Summenregel log,(x + y) = log, x + log,(1 + y/x)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 21 /35

Ab5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Logarithmus: Beispielrechnung

Bei der Algorithmenanalyse begegnet man ofters Ausdriicken der
Form a'°8*_ Wie bekommt man da den Logarithmus aus dem

Exponenten?

Beispiel: 5'982%
Wir verwenden 5 = 29825
5Iog2x _ (2Iog2 5)|0g2x
_ 2Iog25log2x
— 2Iog2xlog25
_ (2Iog2 x)|°g2 5
_ Xlog2 5

~ X2‘32

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Exkurs: Logarithmus

22 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Ab5.4 Beispiel: Mergesort

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 27. Februar 2019 23 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Merge-Schritt

1 def merge(array, tmp, lo, mid, hi):
2 i=1lo
ol j = mid + 1
4 for k in range(lo, hi + 1): # k = lo,...,ht
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp [k] = arrayl[il
7 i+=1
8 else:
Co .
9 tmp [k] = arrayl[j]
10 j+=1
11 for k in range(lo, hi + 1): # k = lo,...,ht
12 array[k] = tmpl[k]
a3

Wir analysieren Laufzeit fiir m :=hi —lo+1

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 24 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Merge-Schritt: Analyse

Beispiel: Mergesort

T(m) =cC +cm-+c3m

> (2 +c)m
Fir m> 1:

T(m) =cCc+com+c3m
<cm+cm+4 cam
=(a+c+a)m

Theorem

Der Merge-Schritt hat lineare Laufzeit, d.h. es gibt Konstanten
¢,c’,ng >0, so dass fiir alle n > ng: cn < T(n) < c’n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 25 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = list(array)

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge (array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

Wir verwenden fiir die Abschatzung:
c1 Zeilen 2—4 Annahme: merge bendtigt

co Zeilen 6 und 12 ca(hi-lo+1) Operationen.
c3 Zeilen 8,9,11

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 26 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Bottom-Up-Mergesort: Analyse |

Annahme: n = 2 fiir ein k € N5

Iterationen der dusseren Schleife (m fiir hi-lo+1):

>

Insgesamt T(n) < ¢+ ¥(co + csn+ can) < l(c1 + o + 3+ ca)n

Iteration 1: n/2 mal innere Schleife mit Merge fiir m =2
2+ n/2(c3 4+ 2cs) = ca + 0.5¢c3n + can

Iteration 2: n/4 mal innere Schleife mit Merge fiir m = 4
¢+ n/4(c3 + 4cy) = o + 0.25¢c3n + can

Aussere Schleife endet nach letzter Iteration /.

Iteration ¢: 1 mal innere Schleife mit Merge fiir m = n
e+ n/n(cs+ ncy) =+ c3+ can

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

Beispiel: Mergesort

27 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse |l

Wie gross ist £7
» In lteration i ist fiir den Merge-Schritt m = 2
» In lteration ¢ hat Merge-Schritt m = 2¢ = n

» Da n=2kist £ = k = log, n.

Mit ¢ := c1 + ¢ + ¢3 + ¢4 erhalten wir T(n) < cnlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 28

/35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse Il

Was, wenn n keine Zweierpotenz, also 2k=1 < n < 2k?
» Trotzdem k Iterationen der dusseren Schleife.
> Innere Schleife verwendet nicht mehr Operationen.
» T(n) < cnk = cn(|logy, n] + 1) < 2cnlog, n (fiir k > 2)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 29 / 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Bottom-Up-Mergesort: Analyse |V

Ahn__liche Abschatzung auch fiir untere Schranke mdoglich.
— Ubung

Theorem

Bottom-Up-Mergesort hat leicht iiberlineare Laufzeit, d.h.
es gibt Konstanten c,c’, ng > 0, so dass fiir alle n > ng gilt
cnlogy, n < T(n) < c’nlog, n.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 30/ 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Leicht tberlineare Laufzeit

Leicht iiberlineare Laufzeit nlog, n:
— doppelt so grosse Eingabe, etwas mehr als doppelt so lange Laufzeit

Was bedeutet das in der Praxis?
» Annahme: ¢ = 1, eine Operation dauert im Schnitt 10~8 Sek.

» Bei 1 Tsd. Elementen warten wir
1078 - 10% log,(10%) ~ 0.0001 Sekunden.

> Bei 10 Tsd. Elementen ~ 0.0013 Sekunden
> Bei 100 Tsd. Elementen ~ 0.017 Sekunden
> Bei 1 Mio. Elementen = 0.2 Sekunden
> Bei 1 Mrd. Elementen ~ 299 Sekunden

Laufzeit nlog, n nicht viel schlechter als lineare Laufzeit

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 31/ 35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Beispiel: Mergesort

Mergesort mit Kostenmodell |

Schliisselvergleiche

» Werden nur in merge durchgefiihrt.

> Mergen zweier Teilfolgen der Lange m und n bendtigt
bestenfalls min(n, m) und schlimmstenfalls n+ m — 1
Vergleiche.

> Bei zwei etwa gleich langen Teilfolgen sind das linear viele
Vergleiche, d.h. es gibt ¢, ¢’ > 0, so dass Anzahl Vergleiche
zwischen cn und ¢’n liegt.

— Anzahl der zum Sortieren einer Sequenz notwendigen
Schliisselvergleiche ist leicht tiberlinear in der Lange der
Sequenz (analog zu Laufzeitanalyse).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019

32

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort

Mergesort mit Kostenmodell |l

Elementbewegungen

» Werden nur in merge durchgefiihrt.

» 2n Bewegungen fiir Sequenz der Lange n.

> Insgesamt fiir Mergesort leicht iiberlinear
(analog zu Schliisselvergleichen)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Beispiel: Mergesort

27. Februar 2019

33 /

35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Zusammenfassung

A5.5 Zusammenfassung

M. Liithi, G. Réger (Universitiat Basel) Algorithmen und Datenstrukturen 27. Februar 2019 34 /35

A5. Laufzeitanalyse: Einfiihrung, Selection- und Mergesort Zusammenfassung

Zusammenfassung

» Bei der Laufzeitanalyse schatzen wir die Anzahl der
ausgefiihrten Operationen ab.

> Wir zdhlen nicht exakt.
» Wir ignorieren, wie lange eine Operation tatséchlich dauert.
» Hauptsache: Laufzeit ungeféhr proportional zu Anzahl
Operationen.
» Selectionsort hat quadratische Laufzeit und bendtigt linear
viele Vertauschungen und quadratisch viele
Schliisselvergleiche.

» Mergesort hat leicht {iberlineare Laufzeit, Schliisselvergleiche
und Elementbewegungen.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 27. Februar 2019 35 /35

	Laufzeitanalyse Allgemein
	Beispiel: Selectionsort
	Exkurs: Logarithmus
	Beispiel: Mergesort
	Zusammenfassung

