Algorithmen und Datenstrukturen
A4. Sortieren II: Mergesort

Marcel Liithi and Gabriele Réger

Universitdt Basel

21. Februar 2019

Algorithmen und Datenstrukturen
21. Februar 2019 — A4. Sortieren Il: Mergesort

A4.1 Mergesort

A4.2 Merge-Schritt

A4.3 Top-Down-Mergesort
A4 .4 Bottom-Up-Mergesort

A4.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 1/22
A4. Sortieren II: Mergesort Mergesort
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 3/22

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 2/ 22
A4. Sortieren II: Mergesort Mergesort
Sortierverfahren
—| Insertionsort |
Nicht —
vergleichsbasierte Mln.lmale
Wil Vergleichszahl
—| Quick Sort |
= : —| Heap Sort |
Uberblick und
Ausblick
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 4 /22

A4. Sortieren |l: Mergesort Mergesort

Mergesort: Idee

v

Beobachtung: zwei bereits sortierte Sequenzen lassen sich
leicht zu einer sortierten Sequenz vereinen.

v

Sequenzen mit einem oder keinem Element sind sortiert.

v

Idee fiir langere Sequenzen:
» Teile Eingabesequenz in zwei etwa gleich grosse Teilbereiche
» Rekursiver Aufruf fiir beide Teilmengen
» Fiige nun sortierte Teilbereiche zusammen.

v

Teile-und-Herrsche-Ansatz (divide and conquer)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 5 /22

A4. Sortieren Il: Mergesort

Mergesort: Illustration

7 3 2 9 7 1 4 5

7] Bl |2 off7 1 4 s
3 7|2 Llff7 1 4 s

‘3 7H2 9‘7145

2 3 7 ol [|s s

1 2 3 4 5 7 7 9

(Detaillierte Animation in Bildschirm-Version der Folien)

Mergesort

A4. Sortieren Il: Mergesort Merge-Schritt

A4.2 Merge-Schritt

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 7 /22

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 6 /22
A4. Sortieren Il: Mergesort Merge-Schritt
Verbinden der Teillésungen
» Indizes lo < mid < hi
» Annahme: array([lo] bis array[mid] und
array[mid+1] bis array[hi] sind bereits sortiert
» Ziel: array[lo] bis array[hi] ist sortiert
> |dee: gehe parallel von vorne nach hinten durch beide
Teilbereiche und sammle das jeweils kleinere Element auf
> Verwendet zusitzlichen Speicher fiir aufgesammelte Werte
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 8 /22

A4. Sortieren |l: Mergesort Merge-Schritt

Verbinden der Teillésungen: Beispiel

Array tmp hat gleiche Grosse wie Eingabearray.

A4. Sortieren Il: Mergesort

Verbinden der Teillosungen: Algorithmus

Merge-Schritt

Initialisierung: i :==lo, j:=mid + 1, k :=lo
a tmp
loi mid J hi

[2]4]5]4] 7]

lo i mid J hi

[2]4]5]4] 7]

-ﬁgmmmm
-

alil<a[j] = tmp[k] = ali

lo mid,i j hi

[2]4]5]4] 7]

alil<a[j] = tmp[k] = al[i

T

lo mid,i hi,j k a[jl<ali] = tmplk] = a[j]
| o 2lafa]
lo mid i hij k afi]<al[j] = tmpl[k] = ali]

mid i hi i>mid = tmp[k] = alj]

lo

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 21. Februar 2019 9 /22

1 def merge(array, tmp, lo, mid, hi):

2 i=1lo

3 j o= mid + 1

4 for k in range(lo, hi + 1): # k = lo,...,hs
5 if j > hi or (i <= mid and array[i] <= array[jl):
6 tmp[k] = array[i]

7 i+=1

8 else:

9 tmp[k] = array([j]

10 j++=1

11 for k in range(lo, hi + 1): # k = lo,...,ht
12 array[k] = tmpl[k]

Auch korrekt fiir lo = mid = hi

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

21. Februar 2019

10 / 22

A4. Sortieren Il: Mergesort Merge-Schritt

Jupyter-Notebook

)

Jupyter
o

Jupyter-Notebook: merge_sort.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 11 /22

A4. Sortieren Il: Mergesort

A4.3 Top-Down-Mergesort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Top-Down-Mergesort

21. Februar 2019

12 /22

A4. Sortieren |l: Mergesort Top-Down-Mergesort

Mergesort: Algorithmus

rekursive Top-Down-Version

def sort(array):
tmp = [0] * len(array) # [0,...,0] with same size as array
sort_aux(array, tmp, O, len(array) - 1)

if hi <= lo:
return
mid = lo + (hi - 1lo) // 2

1
2

3

4

5 def sort_aux(array, tmp, 1lo, hi):
6

7

8

9 # //: Division mit Abrunden

10 sort_aux(array, tmp, lo, mid)
11 sort_aux(array, tmp, mid + 1, hi)
12 merge(array, tmp, lo, mid, hi)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 13 /22

A4. Sortieren Il: Mergesort

Mogliche Verbesserungen

» Auf kurzen Sequenzen ist Insertionsort schneller als Mergesort
— verwende Insertionsort wenn hi - lo klein

» Breche Merge-Schritt direkt ab, falls Positionen lo bis hi
bereits vollstandig sortiert
if array[mid] <= array[mid + 1]:
return

> Kopieren von tmp-Ergebnis in merge kostet Zeit
— tausche Rolle von array und tmp
bei jedem rekursiven Aufruf

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019

Top-Down-Mergesort

14 / 22

A4. Sortieren Il: Mergesort Top-Down-Mergesort

Merge-Schritt: Korrektheit

» Invariante: Am Ende jeder Schleifeniteration ist
» tmp[k] < array[m] fiir alle i < m < mid, und
» tmp[k] < array[n] fiir alle j < n < hi.

» tmp wird von vorne nach hinten beschrieben.

» Nach letzter Schleifeniteration gilt fiir alle lo < r < s < hi,
dass tmp [r] <tmp[s] (= Bereich ist sortiert).

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 15 / 22

A4. Sortieren Il: Mergesort

Mergesort: Korrektheit

sort_aux:
> Induktionsbeweis iiber Bereichslange hi — lo
» Basis hi — lo = —1: leerer Bereich ist sortiert.
» Basis hi — lo = 0: Bereich mit nur einem Element ist sortiert.
» Induktionshypothese: Mergesort ist korrekt fiir alle hi —lo < m

» Induktionsschritt (m —1 — m):
Mergesort macht zwei rekursive Aufrufe mit
hi —lo < m/2 + 1, danach ist die Eingabe jeweils zwischen lo
und mid und zwischen mid + 1 und hi sortiert (lIt. Ind.-hyp).

Wir wissen bereits, dass der Merge-Schritt korrekt ist, also ist
am Ende der gesamte Bereich zwischen lo und hi sortiert.

Mergesort: Ruft sort_aux fiir gesamten Bereich auf,
daher ist am Ende die gesamte Eingabe sortiert.
21. Februar 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Top-Down-Mergesort

16 / 22

A4. Sortieren |l: Mergesort

Mergesort: Eigenschaften

Top-Down-Mergesort

> nicht in-place: verwendet zusitzlichen Speicherplatz fiir tmp

und fiir Aufrufstapel (call stack)

» Zeitbedarf: nicht adaptiv (ausser mit
Mergeabbruch-Verbesserung)
genauere Analyse: ndchste Woche

» stabil: merge praferiert array[i],
wenn array[i] gleich arrayl[j].

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

21. Februar 2019 17 / 22

A4. Sortieren Il: Mergesort

A4 .4 Bottom-Up-Mergesort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bottom-Up-Mergesort

21. Februar 2019 18 / 22

A4. Sortieren Il: Mergesort

Bottom-Up-Version

lo=0 lo=2 lo=14 lo=26
mid =0 mid = 2 mid=4 mid=26
hi=1 hi =3 hi=5 hi=16
lo=0 lo=4
mid = 1 mid =5
hi=3 hi=16
lo=20
mid = 3
hi=16

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Bottom-Up-Mergesort

21. Februar 2019 19 / 22

A4. Sortieren Il: Mergesort

Bottom-Up-Mergesort: Algorithm

iterative Bottom-Up-Version

Bottom-Up-Mergesort

1 def sort(array):

2 n = len(array)

3 tmp = [0] * n

4 length = 1

5 while length < n:

6 lo =0

7 while lo < n - length:

8 mid = lo + length - 1

9 hi = min(lo + 2 * length - 1, n - 1)
10 merge(array, tmp, lo, mid, hi)
11 lo += 2 * length

12 length *= 2

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

21. Februar 2019 20 / 22

A4. Sortieren |l: Mergesort

A4.5 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

21. Februar 2019

21/

A4. Sortieren Il: Mergesort

Zusammenfassung

Zusammenfassung

> Mergesort ist ein Teile-und-Herrsche-Verfahren, das den zu

sortierenden Bereich in zwei etwa gleich grosse Bereiche teilt.

> Der Merge-Schritt fiihrt zwei bereits sortierte Teilbereiche

Zzusammen.

> Mergesort ist stabil, arbeitet aber nicht in-place.

» Die Top-Down-Variante ist ein rekursives Verfahren.

» Die Bottom-Up-Variante ist ein iteratives Verfahren.

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen 21. Februar 2019

22 /22

	Mergesort
	Merge-Schritt
	Top-Down-Mergesort
	Bottom-Up-Mergesort
	Zusammenfassung

