Algorithmen und Datenstrukturen

A3. Sortieren |: Selection- und Insertionsort

Marcel Liithi and Gabriele Roger
Universitdt Basel

21. Februar 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

21. Februar 2019

1/27

Algorithmen und Datenstrukturen
21. Februar 2019 — A3. Sortieren |: Selection- und Insertionsort

A3.1 Sortieralgorithmen

A3.2 Selectionsort

A3.3 Insertionsort

A3.4 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

21. Februar 2019 2 /27

A3. Sortieren |: Selection- und Insertionsort

A3.1 Sortieralgorithmen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Sortieralgorithmen

21. Februar 2019

3 /27

A3. Sortieren I: Selection- und Insertionsort

Inhalt dieser Veranstaltung

Sortieralgorithmen

L AD

_{

_{

-_ Vergleichsbasierte
- Verfahren
Komplexitats-
analyse Nicht
Fundamentale Verg\/eelffashraesr:er <
Datenstrukturen
Suchen ‘ Uberblick und
Ausblick
Graphen ‘
Strings ‘
Weiterfiihrende
Themen

M. Liithi, G. Réger (Universitat Basel)

Algorithmen und Datenstrukturen

21. Februar 2019 4 /27

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

Relevanz

Sortieren von Daten wichtig fiir viele Anwendungen, z.B.
» sortierte Darstellung (z.B. auf Webseite)
» Produkte sortiert nach Preis, Kundenbewertung, etc.
» Kontobewegungen sortiert nach Buchungsdatum
» Vorverarbeitung fiir viele effiziente Suchalgorithmen
» Wie schnell kdnnen Sie eine Nummer im Telefonbuch
nachschlagen? Und wenn die Eintrage nicht sortiert waren?
» Vorverarbeitung fiir viele andere Verfahren

» z.B. Kruskals Algorithmus zur Berechnung minimaler
Spannbdume von ungerichteten Graphen

Fachzeitschrift ,, Computing in Science & Engineering"
nennt Quicksort-Sortieralgorithmus als einen der
10 wichtigsten Algorithmen des 20. Jahrhunderts.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 5 /27

A3. Sortieren I: Selection- und Insertionsort

Aufgabenstellung

Aufgabenstellung Sortieralgorithmen
Eingabe
» Sequenz von n Elementen eq,..., e,
> Jedes Element e; hat Schliissel k; = key(e;)

» Ordnungsrelation < auf den Schliisseln
reflexiv: k < k
transitiv: k < k" und k' < k" = k < k"
antisymmetrisch: k < k' und k' < k = k =K
Resultat
» Sequenz der Eingabeelemente gemass

Ordungsrelation ihrer Schliissel sortiert

Notation: auch e < ¢’ fiir key(e) < key(e’)

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019

Sortieralgorithmen

6 /27

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

Aufgabenstellung: Beispiele

Example
Eingabe: (3,6,2,3,1), key(e) = e, < auf natiirlichen Zahlen
Ausgabe: (1,2,3,3,6)

Example
Eingabe: Liste aller Studierenden der Uni Basel,

key(e) = (Wohnort von e), lexikographische Ordnung
Ausgabe: Liste aller Studierenden, nach Wohnort sortiert

Bis auf weiteres: ganze Zahlen, key(e) = e und , kleiner gleich"
Spater (und Ubung): Umgang mit komplexen Objekten

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 7/27

A3. Sortieren I: Selection- und Insertionsort

Interessante Eigenschaften von Sortieralgorithmen

» Zeitbedarf: Wieviele Schliisselvergleiche und Swaps werden
durchgefiihrt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert.

» Platzbedarf: Wieviel Speicherplatz wird zusatzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusatzlich verbrauchter Platz ist konstant
(nicht abhingig von der Eingabegrosse).

> stabil: Reihenfolge von Elementen mit gleichem Schliissel
wird nicht verandert.

> vergleichsbasiert: Verfahren verwendet nur Vergleich von
Schliisselpaaren und Tausch zweier Elemente.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019

Sortieralgorithmen

8 /27

A3. Sortieren |: Selection- und Insertionsort Sortieralgorithmen

Inhalt dieser Veranstaltung

| Komplexitits-
analyse Nicht
|| leich)
H pndamentale Verg\f:fashbraeierte
Datenstrukturen
___| Suchen | Uberblick und
Ausblick
% Graphen |
% Strings |
Weiterfiihrende
Themen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 9 /27

A3. Sortieren |: Selection- und Insertionsort

A3.2 Selectionsort

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

21. Februar 2019

Selectionsort

10 / 27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Sortierverfahren

—| Insertionsort |

—| Mergesort |

Nicht —
vergleichsbasierte Minimale
Verfahren Vergleichszahl

—| Quick Sort |
—| Heap Sort |

Uberblick und
Ausblick

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 11 /27

A3. Sortieren I: Selection- und Insertionsort

Selectionsort: Informell

» Finde kleinstes Element an
und tausche es an Position

» Finde kleinstes Element an
und tausche es an Position

» Finde kleinstes Element an
und tausche es an Position

M. Liithi, G. Réger (Universitit Basel)

Algorithmen und Datenstrukturen

Positionen 0,...,n—1
0

Positionen 1,...,n—1
1

Positionen n — 2, . ..
n-2

,n—1

21. Februar 2019

Selectionsort

12 /27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # ¢ =20, ..., n-2

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = ¢+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position 7 with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[il

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 13 /27

A3. Sortieren I: Selection- und Insertionsort Selectionsort

Selectionsort: Beispiel

i minind. |0 1 2 3 4 5 6 7

3 7297145 Minimum wird in
01 g 3 ; g g ; ; i 2/ dunklen Eintrdgen

ht.

2 5 797 3 4 5 55
3 6 9 7 7 4 5
4 7 7 7 9 5 . .
5 5 7 9 7™\ Roter Eintrag ist
6 7 9 gefundenes Minimum.

AN

Graue Eintrage sind in richtiger Reihenfolge.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

21. Februar 2019 14 /27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Selectionsort: Korrektheit

» Invariante: Eigenschaft, die wihrend der gesamten
Algorithmenlaufzeit gilt.

» Invariante 1: Zum Ende jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

» Invariante 2: Zum Ende jedes Durchlaufs der dusseren Schleife
ist keines der Elemente an den Positionen < j grosser als ein
Element an einer Position > i.

» Korrektheit der Invarianten per (gemeinsamer) Induktion

» Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner
als das vorletzte.

— gesamte Eingabe sortiert

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 15 / 27

A3. Sortieren I: Selection- und Insertionsort Selectionsort

Selectionsort: Eigenschaften

» in-place: zusatzlicher Speicherbedarf nicht abhingig von
Eingabegrosse

P Zeitbedarf: hdangt nur von Grosse der Eingabe ab
(nicht adaptiv fiir teilsortierte Eingaben)
genauere Analyse: nachste Woche

» nicht stabil: beim Tausch kann das Element an Position i
hinter ein gleiches Element springen, was spater nicht mehr
“repariert” wird.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

21. Februar 2019 16 /

27

A3. Sortieren |: Selection- und Insertionsort Selectionsort

Jupyter-Notebook

A o

Trusted | Pythons ©

: Jupyter selection_sort

Fle Edt View Inset Cel Kemel Widgets Help

Selection Sort
Hier ist nochmal der Selection-Sort-Algorithmus aus der Vorlesung:
In [1]: 1 def selection_sort(array):
2 n = len(array)
3 for i in range(n - 1):
4 # print(array)
min_index = i

6 for j in range(i + 1, n)
7 if array(j] <= array[min_index]:

8 in_index = j

9 # print(*Kleinstes Element an Pos.", 1, "-", len(array) - 1,
10 # "ist", array[min_index])

1 # print(*Tausche es mit*, array[i], “an Pos.", i)

12 array[il, array[min_index] = array[min index], array[il

Hier ein Beispielaufrut:

In [2]: 1 test array = [7,3,5,9,3]
2 selection_sort(test_array)
3 print(test_array)

3, 3,5 7,91

Jupyter-Notebook: selection_sort.ipynb

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 17 / 27

A3. Sortieren |: Selection- und Insertionsort

A3.3 Insertionsort

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019

Insertionsort

18 / 27

A3. Sortieren |: Selection- und Insertionsort Insertionsort

Sortierverfahren

—{ Selectionsort ‘
L Insertionsort__
—{ Mergesort ‘

Minimale
Vergleichszahl

—{ Quick Sort ‘
—{ Heap Sort ‘

Nicht
vergleichsbasierte
Verfahren

Uberblick und
Ausblick

21. Februar 2019 19 / 27

A3. Sortieren I: Selection- und Insertionsort

Insertionsort: Informell

» Ahnlich zum Sortieren von Spielkarten auf der Hand

» Elemente werden nacheinander in bereits sortierten Bereich
am Sequenzanfang einsortiert.

» Grossere Elemente werden entsprechend nach hinten
verschoben.

21. Februar 2019

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Insertionsort

20 / 27

A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Beispiel

A3. Sortieren I: Selection- und Insertionsort Insertionsort

Insertionsort: Algorithmus

il0 1 2 3 4 6 7
3 7 2 9 7 1 4 5

1 7

212 3 7 Graue Eintrage

3 9 “~ wurden nicht bewegt.

4 7 9

511 2 3 7 7 9

6 4 7 7 9

7 5 7 7 9

o AN
Roter Eintrag Schwarze Eintrage
wurde einsortiert. wurden um eins
nach rechts verschoben.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 21 /27
A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Algorithmus (etwas schneller)

Vorherige Version: meiste Zuweisungen an array[j-1] unnétig.

1 def insertion_sort(array):

2 for i in range(l, len(array)):

3 val = arrayl[i]

4 j=1

5 while j > O and array[j - 1] > val:
6 array[j] = array[j - 1]

7 j—=1
8 array[j] = val

Laufzeitanalyse (spater): kein fundamentaler Unterschied
trotzdem: zu bevorzugen, wenn direkte Zuweisung moglich

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 23 /27

1 def insertion_sort(array):

2 n = len(array)

3 for i in range(i, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it s

5 # at the correct position.

6 for j in range(i, 0, -1): # j =1, ..., 1

7 if array[j]l < array[j-1]:

8 # not yet at final position.

9 # swap arraylj] and array[j-1]

10 array[jl, array[j-1] = array[j-1], array[j]

11 else:

12 break # continue with next <
M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 22 /27
A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Korrektheit

» Invariante 1: Zu Beginn jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

» Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grdsser
oder gleich val.

P Korrektheit der Invarianten per Induktion

» Die innere Schleife verdndert die Reihenfolge der an eine
hohere Position verschobenen Elemente nicht und das nach
unten verschobene Element wird korrekt einsortiert.

» Nach letztem Schleifendurchlauf sind alle Elemente sortiert.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 24 /27

A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Eigenschaften

» in place: zusitzlicher Speicherbedarf nicht abhangig von
Eingabegrosse
> Zeitbedarf: adaptiv fiir teilsortierte Eingaben

> Bei bereits sortierter Eingabe bricht innere Schleife direkt ab.
> Bei umgekehrt sortierter Eingabe wird jedes Element
schrittweise bis ganz vorne verschoben.

genauere Analyse: ndchste Woche

P stabil: Element wird nur so lange nach vorne verschoben,
solange es mit echt grosserem Element getauscht wird.
— kann nicht Reihenfolge mit gleichem Element tauschen.

A3. Sortieren I: Selection- und Insertionsort

A3.4 Zusammenfassung

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen

Zusammenfassung

21. Februar 2019

26 /

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 25 /27
A3. Sortieren |: Selection- und Insertionsort Zusammenfassung
Zusammenfassung

» Selectionsort und Insertionsort sind zwei einfache
Sortierverfahren.

> Selectionsort baut die sortierte Sequenz von vorne auf, indem
es sukzessive ein minimales Element aus dem noch
unsortierten Bereich an das Ende des sortierten Bereichs
tauscht.

» Insertionsort betrachtet die Elemente von vorne nach hinten
und sortiert sie in den bereits sortierten Bereich am
Sequenzanfang ein.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 27 /27

	Sortieralgorithmen
	

	Selectionsort
	

	Insertionsort
	

	Zusammenfassung
	

