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Relevanz

Sortieren von Daten wichtig fiir viele Anwendungen, z.B.
» sortierte Darstellung (z.B. auf Webseite)
» Produkte sortiert nach Preis, Kundenbewertung, etc.
» Kontobewegungen sortiert nach Buchungsdatum
» Vorverarbeitung fiir viele effiziente Suchalgorithmen
» Wie schnell kdnnen Sie eine Nummer im Telefonbuch
nachschlagen? Und wenn die Eintrage nicht sortiert waren?
» Vorverarbeitung fiir viele andere Verfahren

» z.B. Kruskals Algorithmus zur Berechnung minimaler
Spannbdume von ungerichteten Graphen

Fachzeitschrift ,, Computing in Science & Engineering"
nennt Quicksort-Sortieralgorithmus als einen der
10 wichtigsten Algorithmen des 20. Jahrhunderts.
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Aufgabenstellung

Aufgabenstellung Sortieralgorithmen
Eingabe
» Sequenz von n Elementen eq,..., e,
> Jedes Element e; hat Schliissel k; = key(e;)

» Ordnungsrelation < auf den Schliisseln
reflexiv: k < k
transitiv: k < k" und k' < k" = k < k"
antisymmetrisch: k < k' und k' < k = k =K
Resultat
» Sequenz der Eingabeelemente gemass

Ordungsrelation ihrer Schliissel sortiert

Notation: auch e < ¢’ fiir key(e) < key(e’)
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Aufgabenstellung: Beispiele

Example
Eingabe: (3,6,2,3,1), key(e) = e, < auf natiirlichen Zahlen
Ausgabe: (1,2,3,3,6)

Example
Eingabe: Liste aller Studierenden der Uni Basel,

key(e) = (Wohnort von e), lexikographische Ordnung
Ausgabe: Liste aller Studierenden, nach Wohnort sortiert

Bis auf weiteres: ganze Zahlen, key(e) = e und , kleiner gleich"
Spater (und Ubung): Umgang mit komplexen Objekten

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 7/27

A3. Sortieren I: Selection- und Insertionsort

Interessante Eigenschaften von Sortieralgorithmen

» Zeitbedarf: Wieviele Schliisselvergleiche und Swaps werden
durchgefiihrt?
adaptiv: Verfahren ist schneller, wenn Eingabe bereits
(teilweise) vorsortiert.

» Platzbedarf: Wieviel Speicherplatz wird zusatzlich zum
Eingabearray verwendet (explizit oder im call stack)?
in-place: Zusatzlich verbrauchter Platz ist konstant
(nicht abhingig von der Eingabegrosse).

> stabil: Reihenfolge von Elementen mit gleichem Schliissel
wird nicht verandert.

> vergleichsbasiert: Verfahren verwendet nur Vergleich von
Schliisselpaaren und Tausch zweier Elemente.
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Selectionsort: Informell

» Finde kleinstes Element an
und tausche es an Position

» Finde kleinstes Element an
und tausche es an Position

» Finde kleinstes Element an
und tausche es an Position
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Selectionsort: Algorithmus

1 def selection_sort(array):

2 n = len(array)

3 for i in range(n - 1): # ¢ =20, ..., n-2

4 # find index of minimum element at positions %, ..., n-1
5 min_index = i

6 for j in range(i + 1, n): # j = ¢+1, ..., n-1

7 if array[j] < array[min_index]:

8 min_index = j

9 # swap element at position 7 with minimum element

10 array[i], array[min_index] = array[min_index], arrayl[il
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Selectionsort: Beispiel

i minind. |0 1 2 3 4 5 6 7

3 7297145 Minimum wird in
01 g 3 ; g g ; ; i 2/ dunklen Eintrdgen

ht.

2 5 797 3 4 5 55
3 6 9 7 7 4 5
4 7 7 7 9 5 . .
5 5 7 9 7™\ Roter Eintrag ist
6 7 9 gefundenes Minimum.

AN

Graue Eintrage sind in richtiger Reihenfolge.
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Selectionsort: Korrektheit

» Invariante: Eigenschaft, die wihrend der gesamten
Algorithmenlaufzeit gilt.

» Invariante 1: Zum Ende jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

» Invariante 2: Zum Ende jedes Durchlaufs der dusseren Schleife
ist keines der Elemente an den Positionen < j grosser als ein
Element an einer Position > i.

» Korrektheit der Invarianten per (gemeinsamer) Induktion

» Nach letztem Schleifendurchlauf sind alle Elemente bis auf das
letzte in korrekter Reihenfolge und das letzte ist nicht kleiner
als das vorletzte.

— gesamte Eingabe sortiert
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Selectionsort: Eigenschaften

» in-place: zusatzlicher Speicherbedarf nicht abhingig von
Eingabegrosse

P Zeitbedarf: hdangt nur von Grosse der Eingabe ab
(nicht adaptiv fiir teilsortierte Eingaben)
genauere Analyse: nachste Woche

» nicht stabil: beim Tausch kann das Element an Position i
hinter ein gleiches Element springen, was spater nicht mehr
“repariert” wird.
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Jupyter-Notebook
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Selection Sort
Hier ist nochmal der Selection-Sort-Algorithmus aus der Vorlesung:
In [1]: 1 def selection_sort(array):
2 n = len(array)
3 for i in range(n - 1):
4 # print(array)
min_index = i

6 for j in range(i + 1, n)
7 if array(j] <= array[min_index]:

8 in_index = j

9 # print(*Kleinstes Element an Pos.", 1, "-", len(array) - 1,
10 # "ist", array[min_index])

1 # print(*Tausche es mit*, array[i], “an Pos.", i)

12 array[il, array[min_index] = array[min index], array[il

Hier ein Beispielaufrut:

In [2]: 1 test array = [7,3,5,9,3]
2 selection_sort(test_array)
3 print(test_array)

3, 3,5 7,91

Jupyter-Notebook: selection_sort.ipynb
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A3.3 Insertionsort
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Insertionsort: Informell

» Ahnlich zum Sortieren von Spielkarten auf der Hand

» Elemente werden nacheinander in bereits sortierten Bereich
am Sequenzanfang einsortiert.

» Grossere Elemente werden entsprechend nach hinten
verschoben.
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Insertionsort: Beispiel

A3. Sortieren I: Selection- und Insertionsort Insertionsort

Insertionsort: Algorithmus

il0 1 2 3 4 6 7
3 7 2 9 7 1 4 5

1 7

212 3 7 Graue Eintrage

3 9 “~ wurden nicht bewegt.

4 7 9

511 2 3 7 7 9

6 4 7 7 9

7 5 7 7 9

o AN
Roter Eintrag Schwarze Eintrage
wurde einsortiert. wurden um eins
nach rechts verschoben.

M. Liithi, G. Réger (Universitit Basel) Algorithmen und Datenstrukturen 21. Februar 2019 21 /27
A3. Sortieren |: Selection- und Insertionsort Insertionsort

Insertionsort: Algorithmus (etwas schneller)

Vorherige Version: meiste Zuweisungen an array[j-1] unnétig.

1 def insertion_sort(array):

2 for i in range(l, len(array)):

3 val = arrayl[i]

4 j=1

5 while j > O and array[j - 1] > val:
6 array[j] = array[j - 1]

7 j—=1
8 array[j] = val

Laufzeitanalyse (spater): kein fundamentaler Unterschied
trotzdem: zu bevorzugen, wenn direkte Zuweisung moglich
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1 def insertion_sort(array):

2 n = len(array)

3 for i in range(i, n): # 4 =1, ..., n - 1

4 # move array[i] to the left until it s

5 # at the correct position.

6 for j in range(i, 0, -1): # j =1, ..., 1

7 if array[j]l < array[j-1]:

8 # not yet at final position.

9 # swap arraylj] and array[j-1]

10 array[jl, array[j-1] = array[j-1], array[j]

11 else:

12 break # continue with next <
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Insertionsort: Korrektheit

» Invariante 1: Zu Beginn jedes Durchlaufs der dusseren Schleife
sind die Elemente an den Positionen < i sortiert.

» Invariante 2: Sei val der Wert an Position i vor Beginn der
inneren Schleife. Zu Beginn jedes Durchlaufs der inneren
Schleife sind die Elemente an den Positionen j bis i grdsser
oder gleich val.

P Korrektheit der Invarianten per Induktion

» Die innere Schleife verdndert die Reihenfolge der an eine
hohere Position verschobenen Elemente nicht und das nach
unten verschobene Element wird korrekt einsortiert.

» Nach letztem Schleifendurchlauf sind alle Elemente sortiert.
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Insertionsort: Eigenschaften

» in place: zusitzlicher Speicherbedarf nicht abhangig von
Eingabegrosse
> Zeitbedarf: adaptiv fiir teilsortierte Eingaben

> Bei bereits sortierter Eingabe bricht innere Schleife direkt ab.
> Bei umgekehrt sortierter Eingabe wird jedes Element
schrittweise bis ganz vorne verschoben.

genauere Analyse: ndchste Woche

P stabil: Element wird nur so lange nach vorne verschoben,
solange es mit echt grosserem Element getauscht wird.
— kann nicht Reihenfolge mit gleichem Element tauschen.
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A3.4 Zusammenfassung
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Zusammenfassung

» Selectionsort und Insertionsort sind zwei einfache
Sortierverfahren.

> Selectionsort baut die sortierte Sequenz von vorne auf, indem
es sukzessive ein minimales Element aus dem noch
unsortierten Bereich an das Ende des sortierten Bereichs
tauscht.

» Insertionsort betrachtet die Elemente von vorne nach hinten
und sortiert sie in den bereits sortierten Bereich am
Sequenzanfang ein.
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